File size: 15,432 Bytes
b334e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule, kaiming_init, normal_init

from mmdet.models.builder import HEADS, build_loss


@HEADS.register_module()
class GridHead(nn.Module):

    def __init__(self,
                 grid_points=9,
                 num_convs=8,
                 roi_feat_size=14,
                 in_channels=256,
                 conv_kernel_size=3,
                 point_feat_channels=64,
                 deconv_kernel_size=4,
                 class_agnostic=False,
                 loss_grid=dict(
                     type='CrossEntropyLoss', use_sigmoid=True,
                     loss_weight=15),
                 conv_cfg=None,
                 norm_cfg=dict(type='GN', num_groups=36)):
        super(GridHead, self).__init__()
        self.grid_points = grid_points
        self.num_convs = num_convs
        self.roi_feat_size = roi_feat_size
        self.in_channels = in_channels
        self.conv_kernel_size = conv_kernel_size
        self.point_feat_channels = point_feat_channels
        self.conv_out_channels = self.point_feat_channels * self.grid_points
        self.class_agnostic = class_agnostic
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        if isinstance(norm_cfg, dict) and norm_cfg['type'] == 'GN':
            assert self.conv_out_channels % norm_cfg['num_groups'] == 0

        assert self.grid_points >= 4
        self.grid_size = int(np.sqrt(self.grid_points))
        if self.grid_size * self.grid_size != self.grid_points:
            raise ValueError('grid_points must be a square number')

        # the predicted heatmap is half of whole_map_size
        if not isinstance(self.roi_feat_size, int):
            raise ValueError('Only square RoIs are supporeted in Grid R-CNN')
        self.whole_map_size = self.roi_feat_size * 4

        # compute point-wise sub-regions
        self.sub_regions = self.calc_sub_regions()

        self.convs = []
        for i in range(self.num_convs):
            in_channels = (
                self.in_channels if i == 0 else self.conv_out_channels)
            stride = 2 if i == 0 else 1
            padding = (self.conv_kernel_size - 1) // 2
            self.convs.append(
                ConvModule(
                    in_channels,
                    self.conv_out_channels,
                    self.conv_kernel_size,
                    stride=stride,
                    padding=padding,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg,
                    bias=True))
        self.convs = nn.Sequential(*self.convs)

        self.deconv1 = nn.ConvTranspose2d(
            self.conv_out_channels,
            self.conv_out_channels,
            kernel_size=deconv_kernel_size,
            stride=2,
            padding=(deconv_kernel_size - 2) // 2,
            groups=grid_points)
        self.norm1 = nn.GroupNorm(grid_points, self.conv_out_channels)
        self.deconv2 = nn.ConvTranspose2d(
            self.conv_out_channels,
            grid_points,
            kernel_size=deconv_kernel_size,
            stride=2,
            padding=(deconv_kernel_size - 2) // 2,
            groups=grid_points)

        # find the 4-neighbor of each grid point
        self.neighbor_points = []
        grid_size = self.grid_size
        for i in range(grid_size):  # i-th column
            for j in range(grid_size):  # j-th row
                neighbors = []
                if i > 0:  # left: (i - 1, j)
                    neighbors.append((i - 1) * grid_size + j)
                if j > 0:  # up: (i, j - 1)
                    neighbors.append(i * grid_size + j - 1)
                if j < grid_size - 1:  # down: (i, j + 1)
                    neighbors.append(i * grid_size + j + 1)
                if i < grid_size - 1:  # right: (i + 1, j)
                    neighbors.append((i + 1) * grid_size + j)
                self.neighbor_points.append(tuple(neighbors))
        # total edges in the grid
        self.num_edges = sum([len(p) for p in self.neighbor_points])

        self.forder_trans = nn.ModuleList()  # first-order feature transition
        self.sorder_trans = nn.ModuleList()  # second-order feature transition
        for neighbors in self.neighbor_points:
            fo_trans = nn.ModuleList()
            so_trans = nn.ModuleList()
            for _ in range(len(neighbors)):
                # each transition module consists of a 5x5 depth-wise conv and
                # 1x1 conv.
                fo_trans.append(
                    nn.Sequential(
                        nn.Conv2d(
                            self.point_feat_channels,
                            self.point_feat_channels,
                            5,
                            stride=1,
                            padding=2,
                            groups=self.point_feat_channels),
                        nn.Conv2d(self.point_feat_channels,
                                  self.point_feat_channels, 1)))
                so_trans.append(
                    nn.Sequential(
                        nn.Conv2d(
                            self.point_feat_channels,
                            self.point_feat_channels,
                            5,
                            1,
                            2,
                            groups=self.point_feat_channels),
                        nn.Conv2d(self.point_feat_channels,
                                  self.point_feat_channels, 1)))
            self.forder_trans.append(fo_trans)
            self.sorder_trans.append(so_trans)

        self.loss_grid = build_loss(loss_grid)

    def init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
                # TODO: compare mode = "fan_in" or "fan_out"
                kaiming_init(m)
        for m in self.modules():
            if isinstance(m, nn.ConvTranspose2d):
                normal_init(m, std=0.001)
        nn.init.constant_(self.deconv2.bias, -np.log(0.99 / 0.01))

    def forward(self, x):
        assert x.shape[-1] == x.shape[-2] == self.roi_feat_size
        # RoI feature transformation, downsample 2x
        x = self.convs(x)

        c = self.point_feat_channels
        # first-order fusion
        x_fo = [None for _ in range(self.grid_points)]
        for i, points in enumerate(self.neighbor_points):
            x_fo[i] = x[:, i * c:(i + 1) * c]
            for j, point_idx in enumerate(points):
                x_fo[i] = x_fo[i] + self.forder_trans[i][j](
                    x[:, point_idx * c:(point_idx + 1) * c])

        # second-order fusion
        x_so = [None for _ in range(self.grid_points)]
        for i, points in enumerate(self.neighbor_points):
            x_so[i] = x[:, i * c:(i + 1) * c]
            for j, point_idx in enumerate(points):
                x_so[i] = x_so[i] + self.sorder_trans[i][j](x_fo[point_idx])

        # predicted heatmap with fused features
        x2 = torch.cat(x_so, dim=1)
        x2 = self.deconv1(x2)
        x2 = F.relu(self.norm1(x2), inplace=True)
        heatmap = self.deconv2(x2)

        # predicted heatmap with original features (applicable during training)
        if self.training:
            x1 = x
            x1 = self.deconv1(x1)
            x1 = F.relu(self.norm1(x1), inplace=True)
            heatmap_unfused = self.deconv2(x1)
        else:
            heatmap_unfused = heatmap

        return dict(fused=heatmap, unfused=heatmap_unfused)

    def calc_sub_regions(self):
        """Compute point specific representation regions.

        See Grid R-CNN Plus (https://arxiv.org/abs/1906.05688) for details.
        """
        # to make it consistent with the original implementation, half_size
        # is computed as 2 * quarter_size, which is smaller
        half_size = self.whole_map_size // 4 * 2
        sub_regions = []
        for i in range(self.grid_points):
            x_idx = i // self.grid_size
            y_idx = i % self.grid_size
            if x_idx == 0:
                sub_x1 = 0
            elif x_idx == self.grid_size - 1:
                sub_x1 = half_size
            else:
                ratio = x_idx / (self.grid_size - 1) - 0.25
                sub_x1 = max(int(ratio * self.whole_map_size), 0)

            if y_idx == 0:
                sub_y1 = 0
            elif y_idx == self.grid_size - 1:
                sub_y1 = half_size
            else:
                ratio = y_idx / (self.grid_size - 1) - 0.25
                sub_y1 = max(int(ratio * self.whole_map_size), 0)
            sub_regions.append(
                (sub_x1, sub_y1, sub_x1 + half_size, sub_y1 + half_size))
        return sub_regions

    def get_targets(self, sampling_results, rcnn_train_cfg):
        # mix all samples (across images) together.
        pos_bboxes = torch.cat([res.pos_bboxes for res in sampling_results],
                               dim=0).cpu()
        pos_gt_bboxes = torch.cat(
            [res.pos_gt_bboxes for res in sampling_results], dim=0).cpu()
        assert pos_bboxes.shape == pos_gt_bboxes.shape

        # expand pos_bboxes to 2x of original size
        x1 = pos_bboxes[:, 0] - (pos_bboxes[:, 2] - pos_bboxes[:, 0]) / 2
        y1 = pos_bboxes[:, 1] - (pos_bboxes[:, 3] - pos_bboxes[:, 1]) / 2
        x2 = pos_bboxes[:, 2] + (pos_bboxes[:, 2] - pos_bboxes[:, 0]) / 2
        y2 = pos_bboxes[:, 3] + (pos_bboxes[:, 3] - pos_bboxes[:, 1]) / 2
        pos_bboxes = torch.stack([x1, y1, x2, y2], dim=-1)
        pos_bbox_ws = (pos_bboxes[:, 2] - pos_bboxes[:, 0]).unsqueeze(-1)
        pos_bbox_hs = (pos_bboxes[:, 3] - pos_bboxes[:, 1]).unsqueeze(-1)

        num_rois = pos_bboxes.shape[0]
        map_size = self.whole_map_size
        # this is not the final target shape
        targets = torch.zeros((num_rois, self.grid_points, map_size, map_size),
                              dtype=torch.float)

        # pre-compute interpolation factors for all grid points.
        # the first item is the factor of x-dim, and the second is y-dim.
        # for a 9-point grid, factors are like (1, 0), (0.5, 0.5), (0, 1)
        factors = []
        for j in range(self.grid_points):
            x_idx = j // self.grid_size
            y_idx = j % self.grid_size
            factors.append((1 - x_idx / (self.grid_size - 1),
                            1 - y_idx / (self.grid_size - 1)))

        radius = rcnn_train_cfg.pos_radius
        radius2 = radius**2
        for i in range(num_rois):
            # ignore small bboxes
            if (pos_bbox_ws[i] <= self.grid_size
                    or pos_bbox_hs[i] <= self.grid_size):
                continue
            # for each grid point, mark a small circle as positive
            for j in range(self.grid_points):
                factor_x, factor_y = factors[j]
                gridpoint_x = factor_x * pos_gt_bboxes[i, 0] + (
                    1 - factor_x) * pos_gt_bboxes[i, 2]
                gridpoint_y = factor_y * pos_gt_bboxes[i, 1] + (
                    1 - factor_y) * pos_gt_bboxes[i, 3]

                cx = int((gridpoint_x - pos_bboxes[i, 0]) / pos_bbox_ws[i] *
                         map_size)
                cy = int((gridpoint_y - pos_bboxes[i, 1]) / pos_bbox_hs[i] *
                         map_size)

                for x in range(cx - radius, cx + radius + 1):
                    for y in range(cy - radius, cy + radius + 1):
                        if x >= 0 and x < map_size and y >= 0 and y < map_size:
                            if (x - cx)**2 + (y - cy)**2 <= radius2:
                                targets[i, j, y, x] = 1
        # reduce the target heatmap size by a half
        # proposed in Grid R-CNN Plus (https://arxiv.org/abs/1906.05688).
        sub_targets = []
        for i in range(self.grid_points):
            sub_x1, sub_y1, sub_x2, sub_y2 = self.sub_regions[i]
            sub_targets.append(targets[:, [i], sub_y1:sub_y2, sub_x1:sub_x2])
        sub_targets = torch.cat(sub_targets, dim=1)
        sub_targets = sub_targets.to(sampling_results[0].pos_bboxes.device)
        return sub_targets

    def loss(self, grid_pred, grid_targets):
        loss_fused = self.loss_grid(grid_pred['fused'], grid_targets)
        loss_unfused = self.loss_grid(grid_pred['unfused'], grid_targets)
        loss_grid = loss_fused + loss_unfused
        return dict(loss_grid=loss_grid)

    def get_bboxes(self, det_bboxes, grid_pred, img_metas):
        # TODO: refactoring
        assert det_bboxes.shape[0] == grid_pred.shape[0]
        det_bboxes = det_bboxes.cpu()
        cls_scores = det_bboxes[:, [4]]
        det_bboxes = det_bboxes[:, :4]
        grid_pred = grid_pred.sigmoid().cpu()

        R, c, h, w = grid_pred.shape
        half_size = self.whole_map_size // 4 * 2
        assert h == w == half_size
        assert c == self.grid_points

        # find the point with max scores in the half-sized heatmap
        grid_pred = grid_pred.view(R * c, h * w)
        pred_scores, pred_position = grid_pred.max(dim=1)
        xs = pred_position % w
        ys = pred_position // w

        # get the position in the whole heatmap instead of half-sized heatmap
        for i in range(self.grid_points):
            xs[i::self.grid_points] += self.sub_regions[i][0]
            ys[i::self.grid_points] += self.sub_regions[i][1]

        # reshape to (num_rois, grid_points)
        pred_scores, xs, ys = tuple(
            map(lambda x: x.view(R, c), [pred_scores, xs, ys]))

        # get expanded pos_bboxes
        widths = (det_bboxes[:, 2] - det_bboxes[:, 0]).unsqueeze(-1)
        heights = (det_bboxes[:, 3] - det_bboxes[:, 1]).unsqueeze(-1)
        x1 = (det_bboxes[:, 0, None] - widths / 2)
        y1 = (det_bboxes[:, 1, None] - heights / 2)
        # map the grid point to the absolute coordinates
        abs_xs = (xs.float() + 0.5) / w * widths + x1
        abs_ys = (ys.float() + 0.5) / h * heights + y1

        # get the grid points indices that fall on the bbox boundaries
        x1_inds = [i for i in range(self.grid_size)]
        y1_inds = [i * self.grid_size for i in range(self.grid_size)]
        x2_inds = [
            self.grid_points - self.grid_size + i
            for i in range(self.grid_size)
        ]
        y2_inds = [(i + 1) * self.grid_size - 1 for i in range(self.grid_size)]

        # voting of all grid points on some boundary
        bboxes_x1 = (abs_xs[:, x1_inds] * pred_scores[:, x1_inds]).sum(
            dim=1, keepdim=True) / (
                pred_scores[:, x1_inds].sum(dim=1, keepdim=True))
        bboxes_y1 = (abs_ys[:, y1_inds] * pred_scores[:, y1_inds]).sum(
            dim=1, keepdim=True) / (
                pred_scores[:, y1_inds].sum(dim=1, keepdim=True))
        bboxes_x2 = (abs_xs[:, x2_inds] * pred_scores[:, x2_inds]).sum(
            dim=1, keepdim=True) / (
                pred_scores[:, x2_inds].sum(dim=1, keepdim=True))
        bboxes_y2 = (abs_ys[:, y2_inds] * pred_scores[:, y2_inds]).sum(
            dim=1, keepdim=True) / (
                pred_scores[:, y2_inds].sum(dim=1, keepdim=True))

        bbox_res = torch.cat(
            [bboxes_x1, bboxes_y1, bboxes_x2, bboxes_y2, cls_scores], dim=1)
        bbox_res[:, [0, 2]].clamp_(min=0, max=img_metas[0]['img_shape'][1])
        bbox_res[:, [1, 3]].clamp_(min=0, max=img_metas[0]['img_shape'][0])

        return bbox_res