File size: 15,621 Bytes
b334e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import Conv2d, ConvModule, build_upsample_layer
from mmcv.ops.carafe import CARAFEPack
from mmcv.runner import auto_fp16, force_fp32
from torch.nn.modules.utils import _pair

from mmdet.core import mask_target
from mmdet.models.builder import HEADS, build_loss

BYTES_PER_FLOAT = 4
# TODO: This memory limit may be too much or too little. It would be better to
# determine it based on available resources.
GPU_MEM_LIMIT = 1024**3  # 1 GB memory limit


@HEADS.register_module()
class FCNMaskHead(nn.Module):

    def __init__(self,
                 num_convs=4,
                 roi_feat_size=14,
                 in_channels=256,
                 conv_kernel_size=3,
                 conv_out_channels=256,
                 num_classes=80,
                 class_agnostic=False,
                 upsample_cfg=dict(type='deconv', scale_factor=2),
                 conv_cfg=None,
                 norm_cfg=None,
                 loss_mask=dict(
                     type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)):
        super(FCNMaskHead, self).__init__()
        self.upsample_cfg = upsample_cfg.copy()
        if self.upsample_cfg['type'] not in [
                None, 'deconv', 'nearest', 'bilinear', 'carafe'
        ]:
            raise ValueError(
                f'Invalid upsample method {self.upsample_cfg["type"]}, '
                'accepted methods are "deconv", "nearest", "bilinear", '
                '"carafe"')
        self.num_convs = num_convs
        # WARN: roi_feat_size is reserved and not used
        self.roi_feat_size = _pair(roi_feat_size)
        self.in_channels = in_channels
        self.conv_kernel_size = conv_kernel_size
        self.conv_out_channels = conv_out_channels
        self.upsample_method = self.upsample_cfg.get('type')
        self.scale_factor = self.upsample_cfg.pop('scale_factor', None)
        self.num_classes = num_classes
        self.class_agnostic = class_agnostic
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.fp16_enabled = False
        self.loss_mask = build_loss(loss_mask)

        self.convs = nn.ModuleList()
        for i in range(self.num_convs):
            in_channels = (
                self.in_channels if i == 0 else self.conv_out_channels)
            padding = (self.conv_kernel_size - 1) // 2
            self.convs.append(
                ConvModule(
                    in_channels,
                    self.conv_out_channels,
                    self.conv_kernel_size,
                    padding=padding,
                    conv_cfg=conv_cfg,
                    norm_cfg=norm_cfg))
        upsample_in_channels = (
            self.conv_out_channels if self.num_convs > 0 else in_channels)
        upsample_cfg_ = self.upsample_cfg.copy()
        if self.upsample_method is None:
            self.upsample = None
        elif self.upsample_method == 'deconv':
            upsample_cfg_.update(
                in_channels=upsample_in_channels,
                out_channels=self.conv_out_channels,
                kernel_size=self.scale_factor,
                stride=self.scale_factor)
            self.upsample = build_upsample_layer(upsample_cfg_)
        elif self.upsample_method == 'carafe':
            upsample_cfg_.update(
                channels=upsample_in_channels, scale_factor=self.scale_factor)
            self.upsample = build_upsample_layer(upsample_cfg_)
        else:
            # suppress warnings
            align_corners = (None
                             if self.upsample_method == 'nearest' else False)
            upsample_cfg_.update(
                scale_factor=self.scale_factor,
                mode=self.upsample_method,
                align_corners=align_corners)
            self.upsample = build_upsample_layer(upsample_cfg_)

        out_channels = 1 if self.class_agnostic else self.num_classes
        logits_in_channel = (
            self.conv_out_channels
            if self.upsample_method == 'deconv' else upsample_in_channels)
        self.conv_logits = Conv2d(logits_in_channel, out_channels, 1)
        self.relu = nn.ReLU(inplace=True)
        self.debug_imgs = None

    def init_weights(self):
        for m in [self.upsample, self.conv_logits]:
            if m is None:
                continue
            elif isinstance(m, CARAFEPack):
                m.init_weights()
            else:
                nn.init.kaiming_normal_(
                    m.weight, mode='fan_out', nonlinearity='relu')
                nn.init.constant_(m.bias, 0)

    @auto_fp16()
    def forward(self, x):
        for conv in self.convs:
            x = conv(x)
        if self.upsample is not None:
            x = self.upsample(x)
            if self.upsample_method == 'deconv':
                x = self.relu(x)
        mask_pred = self.conv_logits(x)
        return mask_pred

    def get_targets(self, sampling_results, gt_masks, rcnn_train_cfg):
        pos_proposals = [res.pos_bboxes for res in sampling_results]
        pos_assigned_gt_inds = [
            res.pos_assigned_gt_inds for res in sampling_results
        ]
        mask_targets = mask_target(pos_proposals, pos_assigned_gt_inds,
                                   gt_masks, rcnn_train_cfg)
        return mask_targets

    @force_fp32(apply_to=('mask_pred', ))
    def loss(self, mask_pred, mask_targets, labels):
        """
        Example:
            >>> from mmdet.models.roi_heads.mask_heads.fcn_mask_head import *  # NOQA
            >>> N = 7  # N = number of extracted ROIs
            >>> C, H, W = 11, 32, 32
            >>> # Create example instance of FCN Mask Head.
            >>> # There are lots of variations depending on the configuration
            >>> self = FCNMaskHead(num_classes=C, num_convs=1)
            >>> inputs = torch.rand(N, self.in_channels, H, W)
            >>> mask_pred = self.forward(inputs)
            >>> sf = self.scale_factor
            >>> labels = torch.randint(0, C, size=(N,))
            >>> # With the default properties the mask targets should indicate
            >>> # a (potentially soft) single-class label
            >>> mask_targets = torch.rand(N, H * sf, W * sf)
            >>> loss = self.loss(mask_pred, mask_targets, labels)
            >>> print('loss = {!r}'.format(loss))
        """
        loss = dict()
        if mask_pred.size(0) == 0:
            loss_mask = mask_pred.sum()
        else:
            if self.class_agnostic:
                loss_mask = self.loss_mask(mask_pred, mask_targets,
                                           torch.zeros_like(labels))
            else:
                loss_mask = self.loss_mask(mask_pred, mask_targets, labels)
        loss['loss_mask'] = loss_mask
        return loss

    def get_seg_masks(self, mask_pred, det_bboxes, det_labels, rcnn_test_cfg,
                      ori_shape, scale_factor, rescale):
        """Get segmentation masks from mask_pred and bboxes.

        Args:
            mask_pred (Tensor or ndarray): shape (n, #class, h, w).
                For single-scale testing, mask_pred is the direct output of
                model, whose type is Tensor, while for multi-scale testing,
                it will be converted to numpy array outside of this method.
            det_bboxes (Tensor): shape (n, 4/5)
            det_labels (Tensor): shape (n, )
            rcnn_test_cfg (dict): rcnn testing config
            ori_shape (Tuple): original image height and width, shape (2,)
            scale_factor(float | Tensor): If ``rescale is True``, box
                coordinates are divided by this scale factor to fit
                ``ori_shape``.
            rescale (bool): If True, the resulting masks will be rescaled to
                ``ori_shape``.

        Returns:
            list[list]: encoded masks. The c-th item in the outer list
                corresponds to the c-th class. Given the c-th outer list, the
                i-th item in that inner list is the mask for the i-th box with
                class label c.

        Example:
            >>> import mmcv
            >>> from mmdet.models.roi_heads.mask_heads.fcn_mask_head import *  # NOQA
            >>> N = 7  # N = number of extracted ROIs
            >>> C, H, W = 11, 32, 32
            >>> # Create example instance of FCN Mask Head.
            >>> self = FCNMaskHead(num_classes=C, num_convs=0)
            >>> inputs = torch.rand(N, self.in_channels, H, W)
            >>> mask_pred = self.forward(inputs)
            >>> # Each input is associated with some bounding box
            >>> det_bboxes = torch.Tensor([[1, 1, 42, 42 ]] * N)
            >>> det_labels = torch.randint(0, C, size=(N,))
            >>> rcnn_test_cfg = mmcv.Config({'mask_thr_binary': 0, })
            >>> ori_shape = (H * 4, W * 4)
            >>> scale_factor = torch.FloatTensor((1, 1))
            >>> rescale = False
            >>> # Encoded masks are a list for each category.
            >>> encoded_masks = self.get_seg_masks(
            >>>     mask_pred, det_bboxes, det_labels, rcnn_test_cfg, ori_shape,
            >>>     scale_factor, rescale
            >>> )
            >>> assert len(encoded_masks) == C
            >>> assert sum(list(map(len, encoded_masks))) == N
        """
        if isinstance(mask_pred, torch.Tensor):
            mask_pred = mask_pred.sigmoid()
        else:
            mask_pred = det_bboxes.new_tensor(mask_pred)

        device = mask_pred.device
        cls_segms = [[] for _ in range(self.num_classes)
                     ]  # BG is not included in num_classes
        bboxes = det_bboxes[:, :4]
        labels = det_labels

        if rescale:
            img_h, img_w = ori_shape[:2]
        else:
            if isinstance(scale_factor, float):
                img_h = np.round(ori_shape[0] * scale_factor).astype(np.int32)
                img_w = np.round(ori_shape[1] * scale_factor).astype(np.int32)
            else:
                w_scale, h_scale = scale_factor[0], scale_factor[1]
                img_h = np.round(ori_shape[0] * h_scale.item()).astype(
                    np.int32)
                img_w = np.round(ori_shape[1] * w_scale.item()).astype(
                    np.int32)
            scale_factor = 1.0

        if not isinstance(scale_factor, (float, torch.Tensor)):
            scale_factor = bboxes.new_tensor(scale_factor)
        bboxes = bboxes / scale_factor

        if torch.onnx.is_in_onnx_export():
            # TODO: Remove after F.grid_sample is supported.
            from torchvision.models.detection.roi_heads \
                import paste_masks_in_image
            masks = paste_masks_in_image(mask_pred, bboxes, ori_shape[:2])
            thr = rcnn_test_cfg.get('mask_thr_binary', 0)
            if thr > 0:
                masks = masks >= thr
            return masks

        N = len(mask_pred)
        # The actual implementation split the input into chunks,
        # and paste them chunk by chunk.
        if device.type == 'cpu':
            # CPU is most efficient when they are pasted one by one with
            # skip_empty=True, so that it performs minimal number of
            # operations.
            num_chunks = N
        else:
            # GPU benefits from parallelism for larger chunks,
            # but may have memory issue
            num_chunks = int(
                np.ceil(N * img_h * img_w * BYTES_PER_FLOAT / GPU_MEM_LIMIT))
            assert (num_chunks <=
                    N), 'Default GPU_MEM_LIMIT is too small; try increasing it'
        chunks = torch.chunk(torch.arange(N, device=device), num_chunks)

        threshold = rcnn_test_cfg.mask_thr_binary
        im_mask = torch.zeros(
            N,
            img_h,
            img_w,
            device=device,
            dtype=torch.bool if threshold >= 0 else torch.uint8)

        if not self.class_agnostic:
            mask_pred = mask_pred[range(N), labels][:, None]

        for inds in chunks:
            masks_chunk, spatial_inds = _do_paste_mask(
                mask_pred[inds],
                bboxes[inds],
                img_h,
                img_w,
                skip_empty=device.type == 'cpu')

            if threshold >= 0:
                masks_chunk = (masks_chunk >= threshold).to(dtype=torch.bool)
            else:
                # for visualization and debugging
                masks_chunk = (masks_chunk * 255).to(dtype=torch.uint8)

            im_mask[(inds, ) + spatial_inds] = masks_chunk

        for i in range(N):
            cls_segms[labels[i]].append(im_mask[i].detach().cpu().numpy())
        return cls_segms


def _do_paste_mask(masks, boxes, img_h, img_w, skip_empty=True):
    """Paste instance masks according to boxes.

    This implementation is modified from
    https://github.com/facebookresearch/detectron2/

    Args:
        masks (Tensor): N, 1, H, W
        boxes (Tensor): N, 4
        img_h (int): Height of the image to be pasted.
        img_w (int): Width of the image to be pasted.
        skip_empty (bool): Only paste masks within the region that
            tightly bound all boxes, and returns the results this region only.
            An important optimization for CPU.

    Returns:
        tuple: (Tensor, tuple). The first item is mask tensor, the second one
            is the slice object.
        If skip_empty == False, the whole image will be pasted. It will
            return a mask of shape (N, img_h, img_w) and an empty tuple.
        If skip_empty == True, only area around the mask will be pasted.
            A mask of shape (N, h', w') and its start and end coordinates
            in the original image will be returned.
    """
    # On GPU, paste all masks together (up to chunk size)
    # by using the entire image to sample the masks
    # Compared to pasting them one by one,
    # this has more operations but is faster on COCO-scale dataset.
    device = masks.device
    if skip_empty:
        x0_int, y0_int = torch.clamp(
            boxes.min(dim=0).values.floor()[:2] - 1,
            min=0).to(dtype=torch.int32)
        x1_int = torch.clamp(
            boxes[:, 2].max().ceil() + 1, max=img_w).to(dtype=torch.int32)
        y1_int = torch.clamp(
            boxes[:, 3].max().ceil() + 1, max=img_h).to(dtype=torch.int32)
    else:
        x0_int, y0_int = 0, 0
        x1_int, y1_int = img_w, img_h
    x0, y0, x1, y1 = torch.split(boxes, 1, dim=1)  # each is Nx1

    N = masks.shape[0]

    img_y = torch.arange(
        y0_int, y1_int, device=device, dtype=torch.float32) + 0.5
    img_x = torch.arange(
        x0_int, x1_int, device=device, dtype=torch.float32) + 0.5
    img_y = (img_y - y0) / (y1 - y0) * 2 - 1
    img_x = (img_x - x0) / (x1 - x0) * 2 - 1
    # img_x, img_y have shapes (N, w), (N, h)
    if torch.isinf(img_x).any():
        inds = torch.where(torch.isinf(img_x))
        img_x[inds] = 0
    if torch.isinf(img_y).any():
        inds = torch.where(torch.isinf(img_y))
        img_y[inds] = 0

    gx = img_x[:, None, :].expand(N, img_y.size(1), img_x.size(1))
    gy = img_y[:, :, None].expand(N, img_y.size(1), img_x.size(1))
    grid = torch.stack([gx, gy], dim=3)

    if torch.onnx.is_in_onnx_export():
        raise RuntimeError(
            'Exporting F.grid_sample from Pytorch to ONNX is not supported.')
    img_masks = F.grid_sample(
        masks.to(dtype=torch.float32), grid, align_corners=False)

    if skip_empty:
        return img_masks[:, 0], (slice(y0_int, y1_int), slice(x0_int, x1_int))
    else:
        return img_masks[:, 0], ()