File size: 24,584 Bytes
b334e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule, kaiming_init, normal_init, xavier_init
from mmcv.runner import force_fp32

from mmdet.core import build_bbox_coder, multi_apply, multiclass_nms
from mmdet.models.builder import HEADS, build_loss
from mmdet.models.losses import accuracy


@HEADS.register_module()
class SABLHead(nn.Module):
    """Side-Aware Boundary Localization (SABL) for RoI-Head.

    Side-Aware features are extracted by conv layers
    with an attention mechanism.
    Boundary Localization with Bucketing and Bucketing Guided Rescoring
    are implemented in BucketingBBoxCoder.

    Please refer to https://arxiv.org/abs/1912.04260 for more details.

    Args:
        cls_in_channels (int): Input channels of cls RoI feature. \
            Defaults to 256.
        reg_in_channels (int): Input channels of reg RoI feature. \
            Defaults to 256.
        roi_feat_size (int): Size of RoI features. Defaults to 7.
        reg_feat_up_ratio (int): Upsample ratio of reg features. \
            Defaults to 2.
        reg_pre_kernel (int): Kernel of 2D conv layers before \
            attention pooling. Defaults to 3.
        reg_post_kernel (int): Kernel of 1D conv layers after \
            attention pooling. Defaults to 3.
        reg_pre_num (int): Number of pre convs. Defaults to 2.
        reg_post_num (int): Number of post convs. Defaults to 1.
        num_classes (int): Number of classes in dataset. Defaults to 80.
        cls_out_channels (int): Hidden channels in cls fcs. Defaults to 1024.
        reg_offset_out_channels (int): Hidden and output channel \
            of reg offset branch. Defaults to 256.
        reg_cls_out_channels (int): Hidden and output channel \
            of reg cls branch. Defaults to 256.
        num_cls_fcs (int): Number of fcs for cls branch. Defaults to 1.
        num_reg_fcs (int): Number of fcs for reg branch.. Defaults to 0.
        reg_class_agnostic (bool): Class agnostic regresion or not. \
            Defaults to True.
        norm_cfg (dict): Config of norm layers. Defaults to None.
        bbox_coder (dict): Config of bbox coder. Defaults 'BucketingBBoxCoder'.
        loss_cls (dict): Config of classification loss.
        loss_bbox_cls (dict): Config of classification loss for bbox branch.
        loss_bbox_reg (dict): Config of regression loss for bbox branch.
    """

    def __init__(self,
                 num_classes,
                 cls_in_channels=256,
                 reg_in_channels=256,
                 roi_feat_size=7,
                 reg_feat_up_ratio=2,
                 reg_pre_kernel=3,
                 reg_post_kernel=3,
                 reg_pre_num=2,
                 reg_post_num=1,
                 cls_out_channels=1024,
                 reg_offset_out_channels=256,
                 reg_cls_out_channels=256,
                 num_cls_fcs=1,
                 num_reg_fcs=0,
                 reg_class_agnostic=True,
                 norm_cfg=None,
                 bbox_coder=dict(
                     type='BucketingBBoxCoder',
                     num_buckets=14,
                     scale_factor=1.7),
                 loss_cls=dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=False,
                     loss_weight=1.0),
                 loss_bbox_cls=dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=True,
                     loss_weight=1.0),
                 loss_bbox_reg=dict(
                     type='SmoothL1Loss', beta=0.1, loss_weight=1.0)):
        super(SABLHead, self).__init__()
        self.cls_in_channels = cls_in_channels
        self.reg_in_channels = reg_in_channels
        self.roi_feat_size = roi_feat_size
        self.reg_feat_up_ratio = int(reg_feat_up_ratio)
        self.num_buckets = bbox_coder['num_buckets']
        assert self.reg_feat_up_ratio // 2 >= 1
        self.up_reg_feat_size = roi_feat_size * self.reg_feat_up_ratio
        assert self.up_reg_feat_size == bbox_coder['num_buckets']
        self.reg_pre_kernel = reg_pre_kernel
        self.reg_post_kernel = reg_post_kernel
        self.reg_pre_num = reg_pre_num
        self.reg_post_num = reg_post_num
        self.num_classes = num_classes
        self.cls_out_channels = cls_out_channels
        self.reg_offset_out_channels = reg_offset_out_channels
        self.reg_cls_out_channels = reg_cls_out_channels
        self.num_cls_fcs = num_cls_fcs
        self.num_reg_fcs = num_reg_fcs
        self.reg_class_agnostic = reg_class_agnostic
        assert self.reg_class_agnostic
        self.norm_cfg = norm_cfg

        self.bbox_coder = build_bbox_coder(bbox_coder)
        self.loss_cls = build_loss(loss_cls)
        self.loss_bbox_cls = build_loss(loss_bbox_cls)
        self.loss_bbox_reg = build_loss(loss_bbox_reg)

        self.cls_fcs = self._add_fc_branch(self.num_cls_fcs,
                                           self.cls_in_channels,
                                           self.roi_feat_size,
                                           self.cls_out_channels)

        self.side_num = int(np.ceil(self.num_buckets / 2))

        if self.reg_feat_up_ratio > 1:
            self.upsample_x = nn.ConvTranspose1d(
                reg_in_channels,
                reg_in_channels,
                self.reg_feat_up_ratio,
                stride=self.reg_feat_up_ratio)
            self.upsample_y = nn.ConvTranspose1d(
                reg_in_channels,
                reg_in_channels,
                self.reg_feat_up_ratio,
                stride=self.reg_feat_up_ratio)

        self.reg_pre_convs = nn.ModuleList()
        for i in range(self.reg_pre_num):
            reg_pre_conv = ConvModule(
                reg_in_channels,
                reg_in_channels,
                kernel_size=reg_pre_kernel,
                padding=reg_pre_kernel // 2,
                norm_cfg=norm_cfg,
                act_cfg=dict(type='ReLU'))
            self.reg_pre_convs.append(reg_pre_conv)

        self.reg_post_conv_xs = nn.ModuleList()
        for i in range(self.reg_post_num):
            reg_post_conv_x = ConvModule(
                reg_in_channels,
                reg_in_channels,
                kernel_size=(1, reg_post_kernel),
                padding=(0, reg_post_kernel // 2),
                norm_cfg=norm_cfg,
                act_cfg=dict(type='ReLU'))
            self.reg_post_conv_xs.append(reg_post_conv_x)
        self.reg_post_conv_ys = nn.ModuleList()
        for i in range(self.reg_post_num):
            reg_post_conv_y = ConvModule(
                reg_in_channels,
                reg_in_channels,
                kernel_size=(reg_post_kernel, 1),
                padding=(reg_post_kernel // 2, 0),
                norm_cfg=norm_cfg,
                act_cfg=dict(type='ReLU'))
            self.reg_post_conv_ys.append(reg_post_conv_y)

        self.reg_conv_att_x = nn.Conv2d(reg_in_channels, 1, 1)
        self.reg_conv_att_y = nn.Conv2d(reg_in_channels, 1, 1)

        self.fc_cls = nn.Linear(self.cls_out_channels, self.num_classes + 1)
        self.relu = nn.ReLU(inplace=True)

        self.reg_cls_fcs = self._add_fc_branch(self.num_reg_fcs,
                                               self.reg_in_channels, 1,
                                               self.reg_cls_out_channels)
        self.reg_offset_fcs = self._add_fc_branch(self.num_reg_fcs,
                                                  self.reg_in_channels, 1,
                                                  self.reg_offset_out_channels)
        self.fc_reg_cls = nn.Linear(self.reg_cls_out_channels, 1)
        self.fc_reg_offset = nn.Linear(self.reg_offset_out_channels, 1)

    def _add_fc_branch(self, num_branch_fcs, in_channels, roi_feat_size,
                       fc_out_channels):
        in_channels = in_channels * roi_feat_size * roi_feat_size
        branch_fcs = nn.ModuleList()
        for i in range(num_branch_fcs):
            fc_in_channels = (in_channels if i == 0 else fc_out_channels)
            branch_fcs.append(nn.Linear(fc_in_channels, fc_out_channels))
        return branch_fcs

    def init_weights(self):
        for module_list in [
                self.reg_cls_fcs, self.reg_offset_fcs, self.cls_fcs
        ]:
            for m in module_list.modules():
                if isinstance(m, nn.Linear):
                    xavier_init(m, distribution='uniform')
        if self.reg_feat_up_ratio > 1:
            kaiming_init(self.upsample_x, distribution='normal')
            kaiming_init(self.upsample_y, distribution='normal')

        normal_init(self.reg_conv_att_x, 0, 0.01)
        normal_init(self.reg_conv_att_y, 0, 0.01)
        normal_init(self.fc_reg_offset, 0, 0.001)
        normal_init(self.fc_reg_cls, 0, 0.01)
        normal_init(self.fc_cls, 0, 0.01)

    def cls_forward(self, cls_x):
        cls_x = cls_x.view(cls_x.size(0), -1)
        for fc in self.cls_fcs:
            cls_x = self.relu(fc(cls_x))
        cls_score = self.fc_cls(cls_x)
        return cls_score

    def attention_pool(self, reg_x):
        """Extract direction-specific features fx and fy with attention
        methanism."""
        reg_fx = reg_x
        reg_fy = reg_x
        reg_fx_att = self.reg_conv_att_x(reg_fx).sigmoid()
        reg_fy_att = self.reg_conv_att_y(reg_fy).sigmoid()
        reg_fx_att = reg_fx_att / reg_fx_att.sum(dim=2).unsqueeze(2)
        reg_fy_att = reg_fy_att / reg_fy_att.sum(dim=3).unsqueeze(3)
        reg_fx = (reg_fx * reg_fx_att).sum(dim=2)
        reg_fy = (reg_fy * reg_fy_att).sum(dim=3)
        return reg_fx, reg_fy

    def side_aware_feature_extractor(self, reg_x):
        """Refine and extract side-aware features without split them."""
        for reg_pre_conv in self.reg_pre_convs:
            reg_x = reg_pre_conv(reg_x)
        reg_fx, reg_fy = self.attention_pool(reg_x)

        if self.reg_post_num > 0:
            reg_fx = reg_fx.unsqueeze(2)
            reg_fy = reg_fy.unsqueeze(3)
            for i in range(self.reg_post_num):
                reg_fx = self.reg_post_conv_xs[i](reg_fx)
                reg_fy = self.reg_post_conv_ys[i](reg_fy)
            reg_fx = reg_fx.squeeze(2)
            reg_fy = reg_fy.squeeze(3)
        if self.reg_feat_up_ratio > 1:
            reg_fx = self.relu(self.upsample_x(reg_fx))
            reg_fy = self.relu(self.upsample_y(reg_fy))
        reg_fx = torch.transpose(reg_fx, 1, 2)
        reg_fy = torch.transpose(reg_fy, 1, 2)
        return reg_fx.contiguous(), reg_fy.contiguous()

    def reg_pred(self, x, offset_fcs, cls_fcs):
        """Predict bucketing estimation (cls_pred) and fine regression (offset
        pred) with side-aware features."""
        x_offset = x.view(-1, self.reg_in_channels)
        x_cls = x.view(-1, self.reg_in_channels)

        for fc in offset_fcs:
            x_offset = self.relu(fc(x_offset))
        for fc in cls_fcs:
            x_cls = self.relu(fc(x_cls))
        offset_pred = self.fc_reg_offset(x_offset)
        cls_pred = self.fc_reg_cls(x_cls)

        offset_pred = offset_pred.view(x.size(0), -1)
        cls_pred = cls_pred.view(x.size(0), -1)

        return offset_pred, cls_pred

    def side_aware_split(self, feat):
        """Split side-aware features aligned with orders of bucketing
        targets."""
        l_end = int(np.ceil(self.up_reg_feat_size / 2))
        r_start = int(np.floor(self.up_reg_feat_size / 2))
        feat_fl = feat[:, :l_end]
        feat_fr = feat[:, r_start:].flip(dims=(1, ))
        feat_fl = feat_fl.contiguous()
        feat_fr = feat_fr.contiguous()
        feat = torch.cat([feat_fl, feat_fr], dim=-1)
        return feat

    def bbox_pred_split(self, bbox_pred, num_proposals_per_img):
        """Split batch bbox prediction back to each image."""
        bucket_cls_preds, bucket_offset_preds = bbox_pred
        bucket_cls_preds = bucket_cls_preds.split(num_proposals_per_img, 0)
        bucket_offset_preds = bucket_offset_preds.split(
            num_proposals_per_img, 0)
        bbox_pred = tuple(zip(bucket_cls_preds, bucket_offset_preds))
        return bbox_pred

    def reg_forward(self, reg_x):
        outs = self.side_aware_feature_extractor(reg_x)
        edge_offset_preds = []
        edge_cls_preds = []
        reg_fx = outs[0]
        reg_fy = outs[1]
        offset_pred_x, cls_pred_x = self.reg_pred(reg_fx, self.reg_offset_fcs,
                                                  self.reg_cls_fcs)
        offset_pred_y, cls_pred_y = self.reg_pred(reg_fy, self.reg_offset_fcs,
                                                  self.reg_cls_fcs)
        offset_pred_x = self.side_aware_split(offset_pred_x)
        offset_pred_y = self.side_aware_split(offset_pred_y)
        cls_pred_x = self.side_aware_split(cls_pred_x)
        cls_pred_y = self.side_aware_split(cls_pred_y)
        edge_offset_preds = torch.cat([offset_pred_x, offset_pred_y], dim=-1)
        edge_cls_preds = torch.cat([cls_pred_x, cls_pred_y], dim=-1)

        return (edge_cls_preds, edge_offset_preds)

    def forward(self, x):

        bbox_pred = self.reg_forward(x)
        cls_score = self.cls_forward(x)

        return cls_score, bbox_pred

    def get_targets(self, sampling_results, gt_bboxes, gt_labels,
                    rcnn_train_cfg):
        pos_proposals = [res.pos_bboxes for res in sampling_results]
        neg_proposals = [res.neg_bboxes for res in sampling_results]
        pos_gt_bboxes = [res.pos_gt_bboxes for res in sampling_results]
        pos_gt_labels = [res.pos_gt_labels for res in sampling_results]
        cls_reg_targets = self.bucket_target(pos_proposals, neg_proposals,
                                             pos_gt_bboxes, pos_gt_labels,
                                             rcnn_train_cfg)
        (labels, label_weights, bucket_cls_targets, bucket_cls_weights,
         bucket_offset_targets, bucket_offset_weights) = cls_reg_targets
        return (labels, label_weights, (bucket_cls_targets,
                                        bucket_offset_targets),
                (bucket_cls_weights, bucket_offset_weights))

    def bucket_target(self,
                      pos_proposals_list,
                      neg_proposals_list,
                      pos_gt_bboxes_list,
                      pos_gt_labels_list,
                      rcnn_train_cfg,
                      concat=True):
        (labels, label_weights, bucket_cls_targets, bucket_cls_weights,
         bucket_offset_targets, bucket_offset_weights) = multi_apply(
             self._bucket_target_single,
             pos_proposals_list,
             neg_proposals_list,
             pos_gt_bboxes_list,
             pos_gt_labels_list,
             cfg=rcnn_train_cfg)

        if concat:
            labels = torch.cat(labels, 0)
            label_weights = torch.cat(label_weights, 0)
            bucket_cls_targets = torch.cat(bucket_cls_targets, 0)
            bucket_cls_weights = torch.cat(bucket_cls_weights, 0)
            bucket_offset_targets = torch.cat(bucket_offset_targets, 0)
            bucket_offset_weights = torch.cat(bucket_offset_weights, 0)
        return (labels, label_weights, bucket_cls_targets, bucket_cls_weights,
                bucket_offset_targets, bucket_offset_weights)

    def _bucket_target_single(self, pos_proposals, neg_proposals,
                              pos_gt_bboxes, pos_gt_labels, cfg):
        """Compute bucketing estimation targets and fine regression targets for
        a single image.

        Args:
            pos_proposals (Tensor): positive proposals of a single image,
                 Shape (n_pos, 4)
            neg_proposals (Tensor): negative proposals of a single image,
                 Shape (n_neg, 4).
            pos_gt_bboxes (Tensor): gt bboxes assigned to positive proposals
                 of a single image, Shape (n_pos, 4).
            pos_gt_labels (Tensor): gt labels assigned to positive proposals
                 of a single image, Shape (n_pos, ).
            cfg (dict): Config of calculating targets

        Returns:
            tuple:

                - labels (Tensor): Labels in a single image. \
                    Shape (n,).
                - label_weights (Tensor): Label weights in a single image.\
                    Shape (n,)
                - bucket_cls_targets (Tensor): Bucket cls targets in \
                    a single image. Shape (n, num_buckets*2).
                - bucket_cls_weights (Tensor): Bucket cls weights in \
                    a single image. Shape (n, num_buckets*2).
                - bucket_offset_targets (Tensor): Bucket offset targets \
                    in a single image. Shape (n, num_buckets*2).
                - bucket_offset_targets (Tensor): Bucket offset weights \
                    in a single image. Shape (n, num_buckets*2).
        """
        num_pos = pos_proposals.size(0)
        num_neg = neg_proposals.size(0)
        num_samples = num_pos + num_neg
        labels = pos_gt_bboxes.new_full((num_samples, ),
                                        self.num_classes,
                                        dtype=torch.long)
        label_weights = pos_proposals.new_zeros(num_samples)
        bucket_cls_targets = pos_proposals.new_zeros(num_samples,
                                                     4 * self.side_num)
        bucket_cls_weights = pos_proposals.new_zeros(num_samples,
                                                     4 * self.side_num)
        bucket_offset_targets = pos_proposals.new_zeros(
            num_samples, 4 * self.side_num)
        bucket_offset_weights = pos_proposals.new_zeros(
            num_samples, 4 * self.side_num)
        if num_pos > 0:
            labels[:num_pos] = pos_gt_labels
            label_weights[:num_pos] = 1.0
            (pos_bucket_offset_targets, pos_bucket_offset_weights,
             pos_bucket_cls_targets,
             pos_bucket_cls_weights) = self.bbox_coder.encode(
                 pos_proposals, pos_gt_bboxes)
            bucket_cls_targets[:num_pos, :] = pos_bucket_cls_targets
            bucket_cls_weights[:num_pos, :] = pos_bucket_cls_weights
            bucket_offset_targets[:num_pos, :] = pos_bucket_offset_targets
            bucket_offset_weights[:num_pos, :] = pos_bucket_offset_weights
        if num_neg > 0:
            label_weights[-num_neg:] = 1.0
        return (labels, label_weights, bucket_cls_targets, bucket_cls_weights,
                bucket_offset_targets, bucket_offset_weights)

    def loss(self,
             cls_score,
             bbox_pred,
             rois,
             labels,
             label_weights,
             bbox_targets,
             bbox_weights,
             reduction_override=None):
        losses = dict()
        if cls_score is not None:
            avg_factor = max(torch.sum(label_weights > 0).float().item(), 1.)
            losses['loss_cls'] = self.loss_cls(
                cls_score,
                labels,
                label_weights,
                avg_factor=avg_factor,
                reduction_override=reduction_override)
            losses['acc'] = accuracy(cls_score, labels)

        if bbox_pred is not None:
            bucket_cls_preds, bucket_offset_preds = bbox_pred
            bucket_cls_targets, bucket_offset_targets = bbox_targets
            bucket_cls_weights, bucket_offset_weights = bbox_weights
            # edge cls
            bucket_cls_preds = bucket_cls_preds.view(-1, self.side_num)
            bucket_cls_targets = bucket_cls_targets.view(-1, self.side_num)
            bucket_cls_weights = bucket_cls_weights.view(-1, self.side_num)
            losses['loss_bbox_cls'] = self.loss_bbox_cls(
                bucket_cls_preds,
                bucket_cls_targets,
                bucket_cls_weights,
                avg_factor=bucket_cls_targets.size(0),
                reduction_override=reduction_override)

            losses['loss_bbox_reg'] = self.loss_bbox_reg(
                bucket_offset_preds,
                bucket_offset_targets,
                bucket_offset_weights,
                avg_factor=bucket_offset_targets.size(0),
                reduction_override=reduction_override)

        return losses

    @force_fp32(apply_to=('cls_score', 'bbox_pred'))
    def get_bboxes(self,
                   rois,
                   cls_score,
                   bbox_pred,
                   img_shape,
                   scale_factor,
                   rescale=False,
                   cfg=None):
        if isinstance(cls_score, list):
            cls_score = sum(cls_score) / float(len(cls_score))
        scores = F.softmax(cls_score, dim=1) if cls_score is not None else None

        if bbox_pred is not None:
            bboxes, confids = self.bbox_coder.decode(rois[:, 1:], bbox_pred,
                                                     img_shape)
        else:
            bboxes = rois[:, 1:].clone()
            confids = None
            if img_shape is not None:
                bboxes[:, [0, 2]].clamp_(min=0, max=img_shape[1] - 1)
                bboxes[:, [1, 3]].clamp_(min=0, max=img_shape[0] - 1)

        if rescale and bboxes.size(0) > 0:
            if isinstance(scale_factor, float):
                bboxes /= scale_factor
            else:
                bboxes /= torch.from_numpy(scale_factor).to(bboxes.device)

        if cfg is None:
            return bboxes, scores
        else:
            det_bboxes, det_labels = multiclass_nms(
                bboxes,
                scores,
                cfg.score_thr,
                cfg.nms,
                cfg.max_per_img,
                score_factors=confids)

            return det_bboxes, det_labels

    @force_fp32(apply_to=('bbox_preds', ))
    def refine_bboxes(self, rois, labels, bbox_preds, pos_is_gts, img_metas):
        """Refine bboxes during training.

        Args:
            rois (Tensor): Shape (n*bs, 5), where n is image number per GPU,
                and bs is the sampled RoIs per image.
            labels (Tensor): Shape (n*bs, ).
            bbox_preds (list[Tensor]): Shape [(n*bs, num_buckets*2), \
                (n*bs, num_buckets*2)].
            pos_is_gts (list[Tensor]): Flags indicating if each positive bbox
                is a gt bbox.
            img_metas (list[dict]): Meta info of each image.

        Returns:
            list[Tensor]: Refined bboxes of each image in a mini-batch.
        """
        img_ids = rois[:, 0].long().unique(sorted=True)
        assert img_ids.numel() == len(img_metas)

        bboxes_list = []
        for i in range(len(img_metas)):
            inds = torch.nonzero(
                rois[:, 0] == i, as_tuple=False).squeeze(dim=1)
            num_rois = inds.numel()

            bboxes_ = rois[inds, 1:]
            label_ = labels[inds]
            edge_cls_preds, edge_offset_preds = bbox_preds
            edge_cls_preds_ = edge_cls_preds[inds]
            edge_offset_preds_ = edge_offset_preds[inds]
            bbox_pred_ = [edge_cls_preds_, edge_offset_preds_]
            img_meta_ = img_metas[i]
            pos_is_gts_ = pos_is_gts[i]

            bboxes = self.regress_by_class(bboxes_, label_, bbox_pred_,
                                           img_meta_)
            # filter gt bboxes
            pos_keep = 1 - pos_is_gts_
            keep_inds = pos_is_gts_.new_ones(num_rois)
            keep_inds[:len(pos_is_gts_)] = pos_keep

            bboxes_list.append(bboxes[keep_inds.type(torch.bool)])

        return bboxes_list

    @force_fp32(apply_to=('bbox_pred', ))
    def regress_by_class(self, rois, label, bbox_pred, img_meta):
        """Regress the bbox for the predicted class. Used in Cascade R-CNN.

        Args:
            rois (Tensor): shape (n, 4) or (n, 5)
            label (Tensor): shape (n, )
            bbox_pred (list[Tensor]): shape [(n, num_buckets *2), \
                (n, num_buckets *2)]
            img_meta (dict): Image meta info.

        Returns:
            Tensor: Regressed bboxes, the same shape as input rois.
        """
        assert rois.size(1) == 4 or rois.size(1) == 5

        if rois.size(1) == 4:
            new_rois, _ = self.bbox_coder.decode(rois, bbox_pred,
                                                 img_meta['img_shape'])
        else:
            bboxes, _ = self.bbox_coder.decode(rois[:, 1:], bbox_pred,
                                               img_meta['img_shape'])
            new_rois = torch.cat((rois[:, [0]], bboxes), dim=1)

        return new_rois