File size: 5,089 Bytes
b334e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Copyright (c) 2019 Western Digital Corporation or its affiliates.

import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule

from ..builder import NECKS


class DetectionBlock(nn.Module):
    """Detection block in YOLO neck.

    Let out_channels = n, the DetectionBlock contains:
    Six ConvLayers, 1 Conv2D Layer and 1 YoloLayer.
    The first 6 ConvLayers are formed the following way:
        1x1xn, 3x3x2n, 1x1xn, 3x3x2n, 1x1xn, 3x3x2n.
    The Conv2D layer is 1x1x255.
    Some block will have branch after the fifth ConvLayer.
    The input channel is arbitrary (in_channels)

    Args:
        in_channels (int): The number of input channels.
        out_channels (int): The number of output channels.
        conv_cfg (dict): Config dict for convolution layer. Default: None.
        norm_cfg (dict): Dictionary to construct and config norm layer.
            Default: dict(type='BN', requires_grad=True)
        act_cfg (dict): Config dict for activation layer.
            Default: dict(type='LeakyReLU', negative_slope=0.1).
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN', requires_grad=True),
                 act_cfg=dict(type='LeakyReLU', negative_slope=0.1)):
        super(DetectionBlock, self).__init__()
        double_out_channels = out_channels * 2

        # shortcut
        cfg = dict(conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg)
        self.conv1 = ConvModule(in_channels, out_channels, 1, **cfg)
        self.conv2 = ConvModule(
            out_channels, double_out_channels, 3, padding=1, **cfg)
        self.conv3 = ConvModule(double_out_channels, out_channels, 1, **cfg)
        self.conv4 = ConvModule(
            out_channels, double_out_channels, 3, padding=1, **cfg)
        self.conv5 = ConvModule(double_out_channels, out_channels, 1, **cfg)

    def forward(self, x):
        tmp = self.conv1(x)
        tmp = self.conv2(tmp)
        tmp = self.conv3(tmp)
        tmp = self.conv4(tmp)
        out = self.conv5(tmp)
        return out


@NECKS.register_module()
class YOLOV3Neck(nn.Module):
    """The neck of YOLOV3.

    It can be treated as a simplified version of FPN. It
    will take the result from Darknet backbone and do some upsampling and
    concatenation. It will finally output the detection result.

    Note:
        The input feats should be from top to bottom.
            i.e., from high-lvl to low-lvl
        But YOLOV3Neck will process them in reversed order.
            i.e., from bottom (high-lvl) to top (low-lvl)

    Args:
        num_scales (int): The number of scales / stages.
        in_channels (int): The number of input channels.
        out_channels (int): The number of output channels.
        conv_cfg (dict): Config dict for convolution layer. Default: None.
        norm_cfg (dict): Dictionary to construct and config norm layer.
            Default: dict(type='BN', requires_grad=True)
        act_cfg (dict): Config dict for activation layer.
            Default: dict(type='LeakyReLU', negative_slope=0.1).
    """

    def __init__(self,
                 num_scales,
                 in_channels,
                 out_channels,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN', requires_grad=True),
                 act_cfg=dict(type='LeakyReLU', negative_slope=0.1)):
        super(YOLOV3Neck, self).__init__()
        assert (num_scales == len(in_channels) == len(out_channels))
        self.num_scales = num_scales
        self.in_channels = in_channels
        self.out_channels = out_channels

        # shortcut
        cfg = dict(conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg)

        # To support arbitrary scales, the code looks awful, but it works.
        # Better solution is welcomed.
        self.detect1 = DetectionBlock(in_channels[0], out_channels[0], **cfg)
        for i in range(1, self.num_scales):
            in_c, out_c = self.in_channels[i], self.out_channels[i]
            self.add_module(f'conv{i}', ConvModule(in_c, out_c, 1, **cfg))
            # in_c + out_c : High-lvl feats will be cat with low-lvl feats
            self.add_module(f'detect{i+1}',
                            DetectionBlock(in_c + out_c, out_c, **cfg))

    def forward(self, feats):
        assert len(feats) == self.num_scales

        # processed from bottom (high-lvl) to top (low-lvl)
        outs = []
        out = self.detect1(feats[-1])
        outs.append(out)

        for i, x in enumerate(reversed(feats[:-1])):
            conv = getattr(self, f'conv{i+1}')
            tmp = conv(out)

            # Cat with low-lvl feats
            tmp = F.interpolate(tmp, scale_factor=2)
            tmp = torch.cat((tmp, x), 1)

            detect = getattr(self, f'detect{i+2}')
            out = detect(tmp)
            outs.append(out)

        return tuple(outs)

    def init_weights(self):
        """Initialize the weights of module."""
        # init is done in ConvModule
        pass