File size: 7,168 Bytes
b334e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import mmcv
import torch

from mmdet.core import bbox_overlaps


@mmcv.jit(derivate=True, coderize=True)
def isr_p(cls_score,
          bbox_pred,
          bbox_targets,
          rois,
          sampling_results,
          loss_cls,
          bbox_coder,
          k=2,
          bias=0,
          num_class=80):
    """Importance-based Sample Reweighting (ISR_P), positive part.

    Args:
        cls_score (Tensor): Predicted classification scores.
        bbox_pred (Tensor): Predicted bbox deltas.
        bbox_targets (tuple[Tensor]): A tuple of bbox targets, the are
            labels, label_weights, bbox_targets, bbox_weights, respectively.
        rois (Tensor): Anchors (single_stage) in shape (n, 4) or RoIs
            (two_stage) in shape (n, 5).
        sampling_results (obj): Sampling results.
        loss_cls (func): Classification loss func of the head.
        bbox_coder (obj): BBox coder of the head.
        k (float): Power of the non-linear mapping.
        bias (float): Shift of the non-linear mapping.
        num_class (int): Number of classes, default: 80.

    Return:
        tuple([Tensor]): labels, imp_based_label_weights, bbox_targets,
            bbox_target_weights
    """

    labels, label_weights, bbox_targets, bbox_weights = bbox_targets
    pos_label_inds = ((labels >= 0) &
                      (labels < num_class)).nonzero().reshape(-1)
    pos_labels = labels[pos_label_inds]

    # if no positive samples, return the original targets
    num_pos = float(pos_label_inds.size(0))
    if num_pos == 0:
        return labels, label_weights, bbox_targets, bbox_weights

    # merge pos_assigned_gt_inds of per image to a single tensor
    gts = list()
    last_max_gt = 0
    for i in range(len(sampling_results)):
        gt_i = sampling_results[i].pos_assigned_gt_inds
        gts.append(gt_i + last_max_gt)
        if len(gt_i) != 0:
            last_max_gt = gt_i.max() + 1
    gts = torch.cat(gts)
    assert len(gts) == num_pos

    cls_score = cls_score.detach()
    bbox_pred = bbox_pred.detach()

    # For single stage detectors, rois here indicate anchors, in shape (N, 4)
    # For two stage detectors, rois are in shape (N, 5)
    if rois.size(-1) == 5:
        pos_rois = rois[pos_label_inds][:, 1:]
    else:
        pos_rois = rois[pos_label_inds]

    if bbox_pred.size(-1) > 4:
        bbox_pred = bbox_pred.view(bbox_pred.size(0), -1, 4)
        pos_delta_pred = bbox_pred[pos_label_inds, pos_labels].view(-1, 4)
    else:
        pos_delta_pred = bbox_pred[pos_label_inds].view(-1, 4)

    # compute iou of the predicted bbox and the corresponding GT
    pos_delta_target = bbox_targets[pos_label_inds].view(-1, 4)
    pos_bbox_pred = bbox_coder.decode(pos_rois, pos_delta_pred)
    target_bbox_pred = bbox_coder.decode(pos_rois, pos_delta_target)
    ious = bbox_overlaps(pos_bbox_pred, target_bbox_pred, is_aligned=True)

    pos_imp_weights = label_weights[pos_label_inds]
    # Two steps to compute IoU-HLR. Samples are first sorted by IoU locally,
    # then sorted again within the same-rank group
    max_l_num = pos_labels.bincount().max()
    for label in pos_labels.unique():
        l_inds = (pos_labels == label).nonzero().view(-1)
        l_gts = gts[l_inds]
        for t in l_gts.unique():
            t_inds = l_inds[l_gts == t]
            t_ious = ious[t_inds]
            _, t_iou_rank_idx = t_ious.sort(descending=True)
            _, t_iou_rank = t_iou_rank_idx.sort()
            ious[t_inds] += max_l_num - t_iou_rank.float()
        l_ious = ious[l_inds]
        _, l_iou_rank_idx = l_ious.sort(descending=True)
        _, l_iou_rank = l_iou_rank_idx.sort()  # IoU-HLR
        # linearly map HLR to label weights
        pos_imp_weights[l_inds] *= (max_l_num - l_iou_rank.float()) / max_l_num

    pos_imp_weights = (bias + pos_imp_weights * (1 - bias)).pow(k)

    # normalize to make the new weighted loss value equal to the original loss
    pos_loss_cls = loss_cls(
        cls_score[pos_label_inds], pos_labels, reduction_override='none')
    if pos_loss_cls.dim() > 1:
        ori_pos_loss_cls = pos_loss_cls * label_weights[pos_label_inds][:,
                                                                        None]
        new_pos_loss_cls = pos_loss_cls * pos_imp_weights[:, None]
    else:
        ori_pos_loss_cls = pos_loss_cls * label_weights[pos_label_inds]
        new_pos_loss_cls = pos_loss_cls * pos_imp_weights
    pos_loss_cls_ratio = ori_pos_loss_cls.sum() / new_pos_loss_cls.sum()
    pos_imp_weights = pos_imp_weights * pos_loss_cls_ratio
    label_weights[pos_label_inds] = pos_imp_weights

    bbox_targets = labels, label_weights, bbox_targets, bbox_weights
    return bbox_targets


@mmcv.jit(derivate=True, coderize=True)
def carl_loss(cls_score,
              labels,
              bbox_pred,
              bbox_targets,
              loss_bbox,
              k=1,
              bias=0.2,
              avg_factor=None,
              sigmoid=False,
              num_class=80):
    """Classification-Aware Regression Loss (CARL).

    Args:
        cls_score (Tensor): Predicted classification scores.
        labels (Tensor): Targets of classification.
        bbox_pred (Tensor): Predicted bbox deltas.
        bbox_targets (Tensor): Target of bbox regression.
        loss_bbox (func): Regression loss func of the head.
        bbox_coder (obj): BBox coder of the head.
        k (float): Power of the non-linear mapping.
        bias (float): Shift of the non-linear mapping.
        avg_factor (int): Average factor used in regression loss.
        sigmoid (bool): Activation of the classification score.
        num_class (int): Number of classes, default: 80.

    Return:
        dict: CARL loss dict.
    """
    pos_label_inds = ((labels >= 0) &
                      (labels < num_class)).nonzero().reshape(-1)
    if pos_label_inds.numel() == 0:
        return dict(loss_carl=cls_score.sum()[None] * 0.)
    pos_labels = labels[pos_label_inds]

    # multiply pos_cls_score with the corresponding bbox weight
    # and remain gradient
    if sigmoid:
        pos_cls_score = cls_score.sigmoid()[pos_label_inds, pos_labels]
    else:
        pos_cls_score = cls_score.softmax(-1)[pos_label_inds, pos_labels]
    carl_loss_weights = (bias + (1 - bias) * pos_cls_score).pow(k)

    # normalize carl_loss_weight to make its sum equal to num positive
    num_pos = float(pos_cls_score.size(0))
    weight_ratio = num_pos / carl_loss_weights.sum()
    carl_loss_weights *= weight_ratio

    if avg_factor is None:
        avg_factor = bbox_targets.size(0)
    # if is class agnostic, bbox pred is in shape (N, 4)
    # otherwise, bbox pred is in shape (N, #classes, 4)
    if bbox_pred.size(-1) > 4:
        bbox_pred = bbox_pred.view(bbox_pred.size(0), -1, 4)
        pos_bbox_preds = bbox_pred[pos_label_inds, pos_labels]
    else:
        pos_bbox_preds = bbox_pred[pos_label_inds]
    ori_loss_reg = loss_bbox(
        pos_bbox_preds,
        bbox_targets[pos_label_inds],
        reduction_override='none') / avg_factor
    loss_carl = (ori_loss_reg * carl_loss_weights[:, None]).sum()
    return dict(loss_carl=loss_carl[None])