File size: 21,654 Bytes
b334e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
# Copyright (c) OpenMMLab. All rights reserved.
import copy
from collections import defaultdict
from itertools import chain

from torch.nn.utils import clip_grad

from annotator.uniformer.mmcv.utils import TORCH_VERSION, _BatchNorm, digit_version
from ..dist_utils import allreduce_grads
from ..fp16_utils import LossScaler, wrap_fp16_model
from .hook import HOOKS, Hook

try:
    # If PyTorch version >= 1.6.0, torch.cuda.amp.GradScaler would be imported
    # and used; otherwise, auto fp16 will adopt mmcv's implementation.
    from torch.cuda.amp import GradScaler
except ImportError:
    pass


@HOOKS.register_module()
class OptimizerHook(Hook):

    def __init__(self, grad_clip=None):
        self.grad_clip = grad_clip

    def clip_grads(self, params):
        params = list(
            filter(lambda p: p.requires_grad and p.grad is not None, params))
        if len(params) > 0:
            return clip_grad.clip_grad_norm_(params, **self.grad_clip)

    def after_train_iter(self, runner):
        runner.optimizer.zero_grad()
        runner.outputs['loss'].backward()
        if self.grad_clip is not None:
            grad_norm = self.clip_grads(runner.model.parameters())
            if grad_norm is not None:
                # Add grad norm to the logger
                runner.log_buffer.update({'grad_norm': float(grad_norm)},
                                         runner.outputs['num_samples'])
        runner.optimizer.step()


@HOOKS.register_module()
class GradientCumulativeOptimizerHook(OptimizerHook):
    """Optimizer Hook implements multi-iters gradient cumulating.

    Args:
        cumulative_iters (int, optional): Num of gradient cumulative iters.
            The optimizer will step every `cumulative_iters` iters.
            Defaults to 1.

    Examples:
        >>> # Use cumulative_iters to simulate a large batch size
        >>> # It is helpful when the hardware cannot handle a large batch size.
        >>> loader = DataLoader(data, batch_size=64)
        >>> optim_hook = GradientCumulativeOptimizerHook(cumulative_iters=4)
        >>> # almost equals to
        >>> loader = DataLoader(data, batch_size=256)
        >>> optim_hook = OptimizerHook()
    """

    def __init__(self, cumulative_iters=1, **kwargs):
        super(GradientCumulativeOptimizerHook, self).__init__(**kwargs)

        assert isinstance(cumulative_iters, int) and cumulative_iters > 0, \
            f'cumulative_iters only accepts positive int, but got ' \
            f'{type(cumulative_iters)} instead.'

        self.cumulative_iters = cumulative_iters
        self.divisible_iters = 0
        self.remainder_iters = 0
        self.initialized = False

    def has_batch_norm(self, module):
        if isinstance(module, _BatchNorm):
            return True
        for m in module.children():
            if self.has_batch_norm(m):
                return True
        return False

    def _init(self, runner):
        if runner.iter % self.cumulative_iters != 0:
            runner.logger.warning(
                'Resume iter number is not divisible by cumulative_iters in '
                'GradientCumulativeOptimizerHook, which means the gradient of '
                'some iters is lost and the result may be influenced slightly.'
            )

        if self.has_batch_norm(runner.model) and self.cumulative_iters > 1:
            runner.logger.warning(
                'GradientCumulativeOptimizerHook may slightly decrease '
                'performance if the model has BatchNorm layers.')

        residual_iters = runner.max_iters - runner.iter

        self.divisible_iters = (
            residual_iters // self.cumulative_iters * self.cumulative_iters)
        self.remainder_iters = residual_iters - self.divisible_iters

        self.initialized = True

    def after_train_iter(self, runner):
        if not self.initialized:
            self._init(runner)

        if runner.iter < self.divisible_iters:
            loss_factor = self.cumulative_iters
        else:
            loss_factor = self.remainder_iters
        loss = runner.outputs['loss']
        loss = loss / loss_factor
        loss.backward()

        if (self.every_n_iters(runner, self.cumulative_iters)
                or self.is_last_iter(runner)):

            if self.grad_clip is not None:
                grad_norm = self.clip_grads(runner.model.parameters())
                if grad_norm is not None:
                    # Add grad norm to the logger
                    runner.log_buffer.update({'grad_norm': float(grad_norm)},
                                             runner.outputs['num_samples'])
            runner.optimizer.step()
            runner.optimizer.zero_grad()


if (TORCH_VERSION != 'parrots'
        and digit_version(TORCH_VERSION) >= digit_version('1.6.0')):

    @HOOKS.register_module()
    class Fp16OptimizerHook(OptimizerHook):
        """FP16 optimizer hook (using PyTorch's implementation).

        If you are using PyTorch >= 1.6, torch.cuda.amp is used as the backend,
        to take care of the optimization procedure.

        Args:
            loss_scale (float | str | dict): Scale factor configuration.
                If loss_scale is a float, static loss scaling will be used with
                the specified scale. If loss_scale is a string, it must be
                'dynamic', then dynamic loss scaling will be used.
                It can also be a dict containing arguments of GradScalar.
                Defaults to 512. For Pytorch >= 1.6, mmcv uses official
                implementation of GradScaler. If you use a dict version of
                loss_scale to create GradScaler, please refer to:
                https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.GradScaler
                for the parameters.

        Examples:
            >>> loss_scale = dict(
            ...     init_scale=65536.0,
            ...     growth_factor=2.0,
            ...     backoff_factor=0.5,
            ...     growth_interval=2000
            ... )
            >>> optimizer_hook = Fp16OptimizerHook(loss_scale=loss_scale)
        """

        def __init__(self,
                     grad_clip=None,
                     coalesce=True,
                     bucket_size_mb=-1,
                     loss_scale=512.,
                     distributed=True):
            self.grad_clip = grad_clip
            self.coalesce = coalesce
            self.bucket_size_mb = bucket_size_mb
            self.distributed = distributed
            self._scale_update_param = None
            if loss_scale == 'dynamic':
                self.loss_scaler = GradScaler()
            elif isinstance(loss_scale, float):
                self._scale_update_param = loss_scale
                self.loss_scaler = GradScaler(init_scale=loss_scale)
            elif isinstance(loss_scale, dict):
                self.loss_scaler = GradScaler(**loss_scale)
            else:
                raise ValueError('loss_scale must be of type float, dict, or '
                                 f'"dynamic", got {loss_scale}')

        def before_run(self, runner):
            """Preparing steps before Mixed Precision Training."""
            # wrap model mode to fp16
            wrap_fp16_model(runner.model)
            # resume from state dict
            if 'fp16' in runner.meta and 'loss_scaler' in runner.meta['fp16']:
                scaler_state_dict = runner.meta['fp16']['loss_scaler']
                self.loss_scaler.load_state_dict(scaler_state_dict)

        def copy_grads_to_fp32(self, fp16_net, fp32_weights):
            """Copy gradients from fp16 model to fp32 weight copy."""
            for fp32_param, fp16_param in zip(fp32_weights,
                                              fp16_net.parameters()):
                if fp16_param.grad is not None:
                    if fp32_param.grad is None:
                        fp32_param.grad = fp32_param.data.new(
                            fp32_param.size())
                    fp32_param.grad.copy_(fp16_param.grad)

        def copy_params_to_fp16(self, fp16_net, fp32_weights):
            """Copy updated params from fp32 weight copy to fp16 model."""
            for fp16_param, fp32_param in zip(fp16_net.parameters(),
                                              fp32_weights):
                fp16_param.data.copy_(fp32_param.data)

        def after_train_iter(self, runner):
            """Backward optimization steps for Mixed Precision Training. For
            dynamic loss scaling, please refer to
            https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.GradScaler.

            1. Scale the loss by a scale factor.
            2. Backward the loss to obtain the gradients.
            3. Unscale the optimizer’s gradient tensors.
            4. Call optimizer.step() and update scale factor.
            5. Save loss_scaler state_dict for resume purpose.
            """
            # clear grads of last iteration
            runner.model.zero_grad()
            runner.optimizer.zero_grad()

            self.loss_scaler.scale(runner.outputs['loss']).backward()
            self.loss_scaler.unscale_(runner.optimizer)
            # grad clip
            if self.grad_clip is not None:
                grad_norm = self.clip_grads(runner.model.parameters())
                if grad_norm is not None:
                    # Add grad norm to the logger
                    runner.log_buffer.update({'grad_norm': float(grad_norm)},
                                             runner.outputs['num_samples'])
            # backward and update scaler
            self.loss_scaler.step(runner.optimizer)
            self.loss_scaler.update(self._scale_update_param)

            # save state_dict of loss_scaler
            runner.meta.setdefault(
                'fp16', {})['loss_scaler'] = self.loss_scaler.state_dict()

    @HOOKS.register_module()
    class GradientCumulativeFp16OptimizerHook(GradientCumulativeOptimizerHook,
                                              Fp16OptimizerHook):
        """Fp16 optimizer Hook (using PyTorch's implementation) implements
        multi-iters gradient cumulating.

        If you are using PyTorch >= 1.6, torch.cuda.amp is used as the backend,
        to take care of the optimization procedure.
        """

        def __init__(self, *args, **kwargs):
            super(GradientCumulativeFp16OptimizerHook,
                  self).__init__(*args, **kwargs)

        def after_train_iter(self, runner):
            if not self.initialized:
                self._init(runner)

            if runner.iter < self.divisible_iters:
                loss_factor = self.cumulative_iters
            else:
                loss_factor = self.remainder_iters
            loss = runner.outputs['loss']
            loss = loss / loss_factor

            self.loss_scaler.scale(loss).backward()

            if (self.every_n_iters(runner, self.cumulative_iters)
                    or self.is_last_iter(runner)):

                # copy fp16 grads in the model to fp32 params in the optimizer
                self.loss_scaler.unscale_(runner.optimizer)

                if self.grad_clip is not None:
                    grad_norm = self.clip_grads(runner.model.parameters())
                    if grad_norm is not None:
                        # Add grad norm to the logger
                        runner.log_buffer.update(
                            {'grad_norm': float(grad_norm)},
                            runner.outputs['num_samples'])

                # backward and update scaler
                self.loss_scaler.step(runner.optimizer)
                self.loss_scaler.update(self._scale_update_param)

                # save state_dict of loss_scaler
                runner.meta.setdefault(
                    'fp16', {})['loss_scaler'] = self.loss_scaler.state_dict()

                # clear grads
                runner.model.zero_grad()
                runner.optimizer.zero_grad()

else:

    @HOOKS.register_module()
    class Fp16OptimizerHook(OptimizerHook):
        """FP16 optimizer hook (mmcv's implementation).

        The steps of fp16 optimizer is as follows.
        1. Scale the loss value.
        2. BP in the fp16 model.
        2. Copy gradients from fp16 model to fp32 weights.
        3. Update fp32 weights.
        4. Copy updated parameters from fp32 weights to fp16 model.

        Refer to https://arxiv.org/abs/1710.03740 for more details.

        Args:
            loss_scale (float | str | dict): Scale factor configuration.
                If loss_scale is a float, static loss scaling will be used with
                the specified scale. If loss_scale is a string, it must be
                'dynamic', then dynamic loss scaling will be used.
                It can also be a dict containing arguments of LossScaler.
                Defaults to 512.
        """

        def __init__(self,
                     grad_clip=None,
                     coalesce=True,
                     bucket_size_mb=-1,
                     loss_scale=512.,
                     distributed=True):
            self.grad_clip = grad_clip
            self.coalesce = coalesce
            self.bucket_size_mb = bucket_size_mb
            self.distributed = distributed
            if loss_scale == 'dynamic':
                self.loss_scaler = LossScaler(mode='dynamic')
            elif isinstance(loss_scale, float):
                self.loss_scaler = LossScaler(
                    init_scale=loss_scale, mode='static')
            elif isinstance(loss_scale, dict):
                self.loss_scaler = LossScaler(**loss_scale)
            else:
                raise ValueError('loss_scale must be of type float, dict, or '
                                 f'"dynamic", got {loss_scale}')

        def before_run(self, runner):
            """Preparing steps before Mixed Precision Training.

            1. Make a master copy of fp32 weights for optimization.
            2. Convert the main model from fp32 to fp16.
            """
            # keep a copy of fp32 weights
            old_groups = runner.optimizer.param_groups
            runner.optimizer.param_groups = copy.deepcopy(
                runner.optimizer.param_groups)
            state = defaultdict(dict)
            p_map = {
                old_p: p
                for old_p, p in zip(
                    chain(*(g['params'] for g in old_groups)),
                    chain(*(g['params']
                            for g in runner.optimizer.param_groups)))
            }
            for k, v in runner.optimizer.state.items():
                state[p_map[k]] = v
            runner.optimizer.state = state
            # convert model to fp16
            wrap_fp16_model(runner.model)
            # resume from state dict
            if 'fp16' in runner.meta and 'loss_scaler' in runner.meta['fp16']:
                scaler_state_dict = runner.meta['fp16']['loss_scaler']
                self.loss_scaler.load_state_dict(scaler_state_dict)

        def copy_grads_to_fp32(self, fp16_net, fp32_weights):
            """Copy gradients from fp16 model to fp32 weight copy."""
            for fp32_param, fp16_param in zip(fp32_weights,
                                              fp16_net.parameters()):
                if fp16_param.grad is not None:
                    if fp32_param.grad is None:
                        fp32_param.grad = fp32_param.data.new(
                            fp32_param.size())
                    fp32_param.grad.copy_(fp16_param.grad)

        def copy_params_to_fp16(self, fp16_net, fp32_weights):
            """Copy updated params from fp32 weight copy to fp16 model."""
            for fp16_param, fp32_param in zip(fp16_net.parameters(),
                                              fp32_weights):
                fp16_param.data.copy_(fp32_param.data)

        def after_train_iter(self, runner):
            """Backward optimization steps for Mixed Precision Training. For
            dynamic loss scaling, please refer `loss_scalar.py`

            1. Scale the loss by a scale factor.
            2. Backward the loss to obtain the gradients (fp16).
            3. Copy gradients from the model to the fp32 weight copy.
            4. Scale the gradients back and update the fp32 weight copy.
            5. Copy back the params from fp32 weight copy to the fp16 model.
            6. Save loss_scaler state_dict for resume purpose.
            """
            # clear grads of last iteration
            runner.model.zero_grad()
            runner.optimizer.zero_grad()
            # scale the loss value
            scaled_loss = runner.outputs['loss'] * self.loss_scaler.loss_scale
            scaled_loss.backward()
            # copy fp16 grads in the model to fp32 params in the optimizer

            fp32_weights = []
            for param_group in runner.optimizer.param_groups:
                fp32_weights += param_group['params']
            self.copy_grads_to_fp32(runner.model, fp32_weights)
            # allreduce grads
            if self.distributed:
                allreduce_grads(fp32_weights, self.coalesce,
                                self.bucket_size_mb)

            has_overflow = self.loss_scaler.has_overflow(fp32_weights)
            # if has overflow, skip this iteration
            if not has_overflow:
                # scale the gradients back
                for param in fp32_weights:
                    if param.grad is not None:
                        param.grad.div_(self.loss_scaler.loss_scale)
                if self.grad_clip is not None:
                    grad_norm = self.clip_grads(fp32_weights)
                    if grad_norm is not None:
                        # Add grad norm to the logger
                        runner.log_buffer.update(
                            {'grad_norm': float(grad_norm)},
                            runner.outputs['num_samples'])
                # update fp32 params
                runner.optimizer.step()
                # copy fp32 params to the fp16 model
                self.copy_params_to_fp16(runner.model, fp32_weights)
            self.loss_scaler.update_scale(has_overflow)
            if has_overflow:
                runner.logger.warning('Check overflow, downscale loss scale '
                                      f'to {self.loss_scaler.cur_scale}')

            # save state_dict of loss_scaler
            runner.meta.setdefault(
                'fp16', {})['loss_scaler'] = self.loss_scaler.state_dict()

    @HOOKS.register_module()
    class GradientCumulativeFp16OptimizerHook(GradientCumulativeOptimizerHook,
                                              Fp16OptimizerHook):
        """Fp16 optimizer Hook (using mmcv implementation) implements multi-
        iters gradient cumulating."""

        def __init__(self, *args, **kwargs):
            super(GradientCumulativeFp16OptimizerHook,
                  self).__init__(*args, **kwargs)

        def after_train_iter(self, runner):
            if not self.initialized:
                self._init(runner)

            if runner.iter < self.divisible_iters:
                loss_factor = self.cumulative_iters
            else:
                loss_factor = self.remainder_iters

            loss = runner.outputs['loss']
            loss = loss / loss_factor

            # scale the loss value
            scaled_loss = loss * self.loss_scaler.loss_scale
            scaled_loss.backward()

            if (self.every_n_iters(runner, self.cumulative_iters)
                    or self.is_last_iter(runner)):

                # copy fp16 grads in the model to fp32 params in the optimizer
                fp32_weights = []
                for param_group in runner.optimizer.param_groups:
                    fp32_weights += param_group['params']
                self.copy_grads_to_fp32(runner.model, fp32_weights)
                # allreduce grads
                if self.distributed:
                    allreduce_grads(fp32_weights, self.coalesce,
                                    self.bucket_size_mb)

                has_overflow = self.loss_scaler.has_overflow(fp32_weights)
                # if has overflow, skip this iteration
                if not has_overflow:
                    # scale the gradients back
                    for param in fp32_weights:
                        if param.grad is not None:
                            param.grad.div_(self.loss_scaler.loss_scale)
                    if self.grad_clip is not None:
                        grad_norm = self.clip_grads(fp32_weights)
                        if grad_norm is not None:
                            # Add grad norm to the logger
                            runner.log_buffer.update(
                                {'grad_norm': float(grad_norm)},
                                runner.outputs['num_samples'])
                    # update fp32 params
                    runner.optimizer.step()
                    # copy fp32 params to the fp16 model
                    self.copy_params_to_fp16(runner.model, fp32_weights)
                else:
                    runner.logger.warning(
                        'Check overflow, downscale loss scale '
                        f'to {self.loss_scaler.cur_scale}')

                self.loss_scaler.update_scale(has_overflow)

                # save state_dict of loss_scaler
                runner.meta.setdefault(
                    'fp16', {})['loss_scaler'] = self.loss_scaler.state_dict()

                # clear grads
                runner.model.zero_grad()
                runner.optimizer.zero_grad()