Spaces:
Runtime error
Runtime error
File size: 27,742 Bytes
ea36477 a4e5c29 5c1ad26 446ca5a 8218bc2 a4e5c29 04a6d97 31d6a08 8218bc2 04a6d97 a4e5c29 c21084e a4e5c29 8218bc2 680cdda a4e5c29 04a6d97 a4e5c29 8218bc2 a4e5c29 680cdda 8218bc2 c21084e 04a6d97 8218bc2 a4e5c29 daf5171 4b9a98d 8218bc2 4b9a98d 8218bc2 b25ef75 3c63f84 04a6d97 8218bc2 2edd6fc 8218bc2 a4e5c29 04a6d97 8218bc2 04a6d97 8a9f69a 04a6d97 f005347 04a6d97 8a9f69a 04a6d97 8a9f69a 04a6d97 8a9f69a 04a6d97 f005347 04a6d97 c8babd6 04a6d97 f005347 04a6d97 f005347 04a6d97 f005347 04a6d97 f005347 8a9f69a f005347 8a9f69a f005347 8218bc2 a4e5c29 04a6d97 8218bc2 a4e5c29 8218bc2 a4e5c29 8218bc2 a4e5c29 31d6a08 8218bc2 a4e5c29 2edd6fc a4e5c29 2edd6fc a4e5c29 8218bc2 04a6d97 223b40e 88577eb 223b40e 88577eb 223b40e 88577eb 04a6d97 88577eb 04a6d97 8218bc2 a4e5c29 b549318 a4e5c29 b549318 a4e5c29 86dee5e a4e5c29 88577eb 04a6d97 a4e5c29 88577eb 04a6d97 a4e5c29 8218bc2 a4e5c29 8218bc2 a4e5c29 8218bc2 04a6d97 a4e5c29 8218bc2 a4e5c29 33a9b02 04a6d97 33a9b02 04a6d97 33a9b02 a4e5c29 8218bc2 a4e5c29 04a6d97 a4e5c29 8218bc2 04a6d97 7472f09 04a6d97 7472f09 04a6d97 7472f09 04a6d97 fae80ea 04a6d97 54a9c5b 31d6a08 04a6d97 31d6a08 04d33ce 31d6a08 f005347 04a6d97 f005347 04a6d97 f005347 04a6d97 8544754 b25ef75 04a6d97 5c1ad26 a96a0b5 ea3e98f 5c1ad26 5140414 5c1ad26 04a6d97 4999642 9a395b0 4999642 f76a974 4999642 9a395b0 40fd1bd 4999642 9a395b0 f76a974 9a395b0 4999642 a968a38 2c672d9 4999642 395d778 4999642 680cdda 386a775 3bbb503 9adfb71 5c1ad26 04a6d97 5c1ad26 c2d534c 5c1ad26 680cdda 5140414 5c1ad26 012a484 5c1ad26 7cd54fa 04cefa3 defe149 4999642 6e57ad7 dbe5251 4999642 5c1ad26 b3a46e5 a0ca203 eeaf49a a0ca203 b58b3e7 eeaf49a a0ca203 5c1ad26 7cd54fa 2fe5cc4 4999642 5c1ad26 680cdda f005347 04a6d97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 |
import csv
import string
import json
import sys
import logging
import argparse
import gensim.downloader as api
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import nltk
import numpy as np
import pandas as pd
import gradio as gr
import readability
import seaborn as sns
import torch
import torch.nn.functional as F
from fuzzywuzzy import fuzz
from nltk.corpus import stopwords
from nltk.corpus import wordnet as wn
from nltk.tokenize import word_tokenize
from sklearn.metrics.pairwise import cosine_similarity
from transformers import DistilBertTokenizer
from transformers import pipeline
from transformers import BertTokenizer
from transformers import AutoTokenizer, BertForSequenceClassification
nltk.download('wordnet')
nltk.download('omw-1.4')
nltk.download('cmudict')
nltk.download('stopwords')
nltk.download('punkt')
glove_vectors = api.load('glove-wiki-gigaword-100')
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
device = torch.device('cuda' if torch.cuda.is_available else 'cpu')
# loading model
PATH = 'pytorchBERTmodel'
model = torch.load(PATH, map_location=torch.device('cpu'))
model.eval()
model.to('cpu')
p = pipeline("automatic-speech-recognition")
with open('balanced_synonym_data.json') as f:
data = json.loads(f.read())
def wn_syns(word):
synonyms = []
for syn in wn.synsets(word):
for lm in syn.lemmas():
synonyms.append(lm.name())
return set(synonyms)
w2v = dict({})
for idx, key in enumerate(glove_vectors.key_to_index.keys()):
w2v[key] = glove_vectors.get_vector(key)
def calculate_diversity(text):
stop_words = set(stopwords.words('english'))
for i in string.punctuation:
stop_words.add(i)
tokenized_text = word_tokenize(text)
tokenized_text = list(map(lambda word: word.lower(), tokenized_text))
global sim_words
sim_words = {}
if len(tokenized_text) <= 1:
return 1, "More Text Required"
for idx, anc in enumerate(tokenized_text):
if anc in stop_words or not anc in w2v or anc.isdigit():
sim_words[idx] = '@'
continue
vocab = [anc]
for pos, comp in enumerate(tokenized_text):
if pos == idx:
continue
if comp in stop_words:
continue
if not comp.isalpha():
continue
try:
if cosine_similarity(w2v[anc].reshape(1, -1), w2v[comp].reshape(1, -1)) > .75 or comp in wn_syns(anc):
vocab.append(comp)
except KeyError:
continue
sim_words[idx] = vocab
print(sim_words)
scores = {}
for key, value in sim_words.items():
if len(value) == 1:
scores[key] = -1
continue
t_sim = len(value)
t_rep = (len(value)) - (len(set(value)))
score = (t_sim - t_rep) / t_sim
scores[key] = score
mean_score = 0
total = 0
for value in scores.values():
if value == -1:
continue
mean_score += value
total += 1
words = word_tokenize(text)
interpret_values = [('', 0.0)]
for key, value in scores.items():
interpret_values.append((words[key], value))
interpret_values.append(('', 0.0))
print(interpret_values)
int_vals = {'original': text, 'interpretation': interpret_values}
try:
return int_vals, {"Diversity Score": mean_score / total}
except ZeroDivisionError:
return int_vals, {"Dviersity Score": "Not Enough Data"}
def get_sim_words(text, word):
word = word.strip()
index = 0
text = word_tokenize(text)
print(sim_words)
for idx, i in enumerate(text):
if word == i:
index = idx
break
return ', '.join(sim_words[index])
def dict_to_list(dictionary, max_size=10):
outer_list = []
inner_list = []
for key, value in dictionary.items():
inner_list.append(value)
if len(inner_list) == max_size:
outer_list.append(inner_list)
inner_list = []
if len(inner_list) > 0:
outer_list.append(inner_list)
return outer_list
def heatmap(scores, df):
total = 0
loops = 0
for ratio in scores.values():
# conditional to visualize the difference between no ratio and a 0 ratio score
if ratio != -.3:
total += ratio
loops += 1
diversity_average = total / loops
return sns.heatmap(df, cmap='gist_gray_r', vmin=-.3).set(
title='Word Diversity Score Heatmap (Average Score: ' + str(diversity_average) + ')')
def stats(text):
results = readability.getmeasures(text, lang='en')
return results
def derive(x:list, y:list):
all_derivs = []
for idx, point in enumerate(x):
if idx != len(x) - 1:
next_x = x[idx + 1]
next_y = y[idx + 1]
h = next_x - point
if h != 0:
deriv = (next_y - y[idx])/h
else:
deriv = 0
all_derivs.append(abs(deriv))
return all_derivs
#(f(x+h) - f(x))/h
def generate_patches(x:list, y:list, range, deriv_threshold=2):
derivs = derive(x,y)
print('derivs', derivs)
in_patch = False
patches = []
start = []
end = []
for idx, der in enumerate(derivs):
if der > deriv_threshold:
if not in_patch:
start.append(x[idx])
in_patch = True
else:
if in_patch:
end.append(x[idx])
in_patch = False
else:
continue
print(start, end)
if len(start) != len(end):
#not doing len(x)-1 because the derivitive can't be taken at ending point so in derive() the x length is already -1 of original
end.append(len(x))
return list(zip(start,end))
def predict(text, tokenizer=tokenizer):
model.eval()
model.to('cpu')
def prepare_data(text, tokenizer):
input_ids = []
attention_masks = []
encoded_text = tokenizer.encode_plus(
text,
truncation=True,
add_special_tokens=True,
max_length=315,
pad_to_max_length=True,
return_attention_mask=True,
return_tensors='pt'
)
input_ids.append(encoded_text['input_ids'])
attention_masks.append(encoded_text['attention_mask'])
input_ids = torch.cat(input_ids, dim=0)
attention_masks = torch.cat(attention_masks, dim=0)
return {'input_ids': input_ids, 'attention_masks': attention_masks}
tokenized_example_text = prepare_data(text, tokenizer)
with torch.no_grad():
result = model(
tokenized_example_text['input_ids'].to('cpu'),
attention_mask=tokenized_example_text['attention_masks'].to('cpu'),
return_dict=True
).logits
return result
def level(score):
if score <= 2.5:
return "n Elementary School"
elif 2.5 <= score <= 5:
return " Middle School"
elif 5 <= score <= 7.5:
return " High School"
else:
return " College"
def reading_difficulty(excerpt):
if len(excerpt) == 0:
return "No Text Provided"
windows = []
words = tokenizer.tokenize(excerpt)
if len(words) > 500:
for idx, text in enumerate(words):
if idx % 500 == 0:
if idx <= len(words) - 501:
x = ' '.join(words[idx: idx + 499])
windows.append(x)
win_preds = []
for text in windows:
win_preds.append(predict(text, tokenizer).item())
result = np.mean(win_preds)
score = -(result * 1.786 + 6.4) + 10
return "Difficulty Level: " + str(round(score, 2)) + '/10' + ' | A' + str(
level(score)) + " student could understand this"
else:
result = predict(excerpt).item()
score = -(result * 1.786 + 6.4) + 10
return 'Difficulty Level: ' + str(round(score, 2)) + '/10' + ' | A' + str(
level(score)) + " student could understand this"
def calculate_stats(file_name, data_index):
# unicode escape only for essays
with open(file_name, encoding='unicode_escape') as f:
information = {'lines': 0, 'words_per_sentence': 0, 'words': 0, 'syll_per_word': 0, 'characters_per_word': 0,
'reading_difficulty': 0}
reader = csv.reader(f)
for line in reader:
if len(line[data_index]) < 100:
continue
# if detect(line[data_index][len(line[data_index]) -400: len(line[data_index])-1]) == 'en':
try:
stat = stats(line[data_index])
except ValueError:
continue
information['lines'] += 1
information['words_per_sentence'] += stat['sentence info']['words_per_sentence']
information['words'] += stat['sentence info']['words']
information['syll_per_word'] += stat['sentence info']['syll_per_word']
information['characters_per_word'] += stat['sentence info']['characters_per_word']
information['reading_difficulty'] += reading_difficulty(line[data_index])
for i in information:
if i != 'lines' and i != 'words':
information[i] /= information['lines']
return information
def transcribe(audio):
# speech to text using pipeline
text = p(audio)["text"]
return text
def compute_score(target, actual):
print(target)
target = target.lower()
actual = actual.lower()
return fuzz.ratio(target, actual)
def phon(text):
alph = nltk.corpus.cmudict.dict()
text = word_tokenize(text)
pronun = []
for word in text:
try:
pronun.append(alph[word][0])
except Exception as e:
pronun.append(word)
def flatten(l):
new_l = []
for i in l:
if type(i) is list:
for j in i:
new_l.append(''.join([i.lower() for i in j if not i.isdigit()]))
else:
new_l.append(str(i))
print('here')
new_l.append(' ')
return "-".join(new_l)
output = []
f = flatten(pronun)
for idx, i in enumerate(f):
output.append('-'.join(i).lower())
print(output)
return ''.join(output)
def plot():
diversity = calculate_diversity(text)[0]
print(diversity)
df = pd.DataFrame(dict_to_list(diversity))
return heatmap(diversity, df)
def sliding_window(text):
words = word_tokenize(text)
improved_window = []
improved_wind_preds = []
for idx, text in enumerate(words):
if idx <= len(words) - 26:
x = ' '.join(words[idx: idx + 25])
throw_away = []
score = 0
for idx, i in enumerate(range(idx, idx + 25)):
if idx == 0:
better_prediction = -(predict(x).item() * 1.786 + 6.4) + 10
score = better_prediction
throw_away.append((better_prediction, i))
else:
throw_away.append((score, i))
improved_window.append(throw_away)
average_scores = {k: 0 for k in range(len(words) - 1)}
total_windows = {k: 0 for k in range(len(words) - 1)}
for idx, i in enumerate(improved_window):
for score, idx in i:
average_scores[idx] += score
total_windows[idx] += 1
for k, v in total_windows.items():
if v != 0:
average_scores[k] /= v
inter_scores = [v for v in average_scores.values()]
copy_list = inter_scores.copy()
print(inter_scores)
while len(inter_scores) <= len(words) - 1:
inter_scores.append(copy_list[-1])
x = list(range(len(inter_scores)))
y = inter_scores
range_chart = [min(y),max(y)]
fig, ax = plt.subplots()
ax.plot(x, y, color='orange', linewidth=2)
ax.grid(False)
plt.xlabel('Word Number', fontweight='bold')
plt.ylabel('Difficulty Score', fontweight='bold')
plt.suptitle('Difficulty Score Across Text', fontsize=14, fontweight='bold')
plt.style.use('ggplot')
ax.set_facecolor('w')
shaded_areas = generate_patches(x, y, .42)
for area in shaded_areas:
print(range_chart[0], range_chart[1])
ax.add_patch(patches.Rectangle((area[0],range_chart[0]), area[1]-area[0], range_chart[1]-range_chart[0], alpha=0.2))
print(shaded_areas)
fig = plt.gcf()
mapd = [('', 0)]
maxy = max(inter_scores)
miny = min(inter_scores)
spread = maxy - miny
for idx, i in enumerate(words):
mapd.append((i, (inter_scores[idx] - miny) / spread))
mapd.append(('', 0))
return fig, {'original': text, 'interpretation': mapd}
def speech_to_text(speech, target):
text = p(speech)["text"]
return text.lower(), {'Pronunciation Score': compute_score(text, target) / 100}, phon(target)
def speech_to_score(speech):
text = p(speech)["text"]
return reading_difficulty(text), text
def my_i_func(text):
return {"original": "", "interpretation": [('', 0.0), ('what', -0.2), ('great', 0.3), ('day', 0.5), ('', 0.0)]}
def gen_syns(word, level):
word = word.strip(" ")
school_to_level = {"Elementary Level":'1', "Middle School Level":'2', "High School Level":'3', "College Level":'4'}
pins = wn_syns(word)
reko = []
for i in pins:
if i in data[school_to_level[level]]:
reko.append(i)
str_reko = ""
for idx, i in enumerate(reko):
if idx != len(reko) -1:
str_reko+= i + ' | '
else:
str_reko+= i
return str_reko
def get_level(word):
with open('balanced_synonym_data.json') as f:
word = word.strip(" ")
data = json.loads(f.read())
level = 0
for k, v in data.items():
if word in v:
level = k
if level == 0:
return -4
return level
def vocab_level_inter(text):
text = word_tokenize(text)
stop_words = set(stopwords.words('english'))
for i in string.punctuation:
stop_words.add(i)
interp = [('',0)]
sum = 0
total = 0
for idx, i in enumerate(text):
if i in stop_words:
lvl = -1
interp.append((i, lvl))
continue
lvl = int(get_level(i))/4
interp.append((i, lvl))
if int(lvl) < 0:
continue
sum+= lvl
total += 1
interp.append(('', 0))
return {'original': text, 'interpretation': interp}, f'{level(sum/total*4*2.5)[1:]} Level Vocabulary'
logger = logging.getLogger(__name__)
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
tokenizer4 = AutoTokenizer.from_pretrained('kanishka/GlossBERT')
def construct_context_gloss_pairs_through_nltk(input, target_start_id, target_end_id):
"""
construct context gloss pairs like sent_cls_ws
:param input: str, a sentence
:param target_start_id: int
:param target_end_id: int
:param lemma: lemma of the target word
:return: candidate lists
"""
sent = tokenizer4.tokenize(input)
assert 0 <= target_start_id and target_start_id < target_end_id and target_end_id <= len(sent)
target = " ".join(sent[target_start_id:target_end_id])
if len(sent) > target_end_id:
sent = sent[:target_start_id] + ['"'] + sent[target_start_id:target_end_id] + ['"'] + sent[target_end_id:]
else:
sent = sent[:target_start_id] + ['"'] + sent[target_start_id:target_end_id] + ['"']
sent = " ".join(sent)
candidate = []
syns = wn.synsets(target)
for syn in syns:
if target == syn.name().split('.')[0]:
continue
gloss = (syn.definition(), syn.name())
candidate.append((sent, f"{target} : {gloss}", target, gloss))
assert len(candidate) != 0, f'there is no candidate sense of "{target}" in WordNet, please check'
# print(f'there are {len(candidate)} candidate senses of "{target}"')
return candidate
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, input_mask, segment_ids):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
def convert_to_features(candidate, tokenizer3, max_seq_length=512):
candidate_results = []
features = []
for item in candidate:
text_a = item[0] # sentence
text_b = item[1] # gloss
candidate_results.append((item[-2], item[-1])) # (target, gloss)
tokens_a = tokenizer3.tokenize(text_a)
tokens_b = tokenizer3.tokenize(text_b)
_truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
tokens = ["[CLS]"] + tokens_a + ["[SEP]"]
segment_ids = [0] * len(tokens)
tokens += tokens_b + ["[SEP]"]
segment_ids += [1] * (len(tokens_b) + 1)
input_ids = tokenizer3.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
padding = [0] * (max_seq_length - len(input_ids))
input_ids += padding
input_mask += padding
segment_ids += padding
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
features.append(
InputFeatures(input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids))
return features, candidate_results
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
def infer(input, target_start_id, target_end_id, args):
sent = tokenizer4.tokenize(input)
assert 0 <= target_start_id and target_start_id < target_end_id and target_end_id <= len(sent)
target = " ".join(sent[target_start_id:target_end_id])
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
label_list = ["0", "1"]
num_labels = len(label_list)
model = BertForSequenceClassification.from_pretrained(args.bert_model,
num_labels=num_labels)
model.to(device)
# print(f"input: {input}\ntarget: {target}")
examples = construct_context_gloss_pairs_through_nltk(input, target_start_id, target_end_id)
eval_features, candidate_results = convert_to_features(examples, tokenizer4)
input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
model.eval()
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)
with torch.no_grad():
logits = model(input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask, labels=None).logits
logits_ = F.softmax(logits, dim=-1)
logits_ = logits_.detach().cpu().numpy()
output = np.argmax(logits_, axis=0)[1]
results= []
for idx, i in enumerate(logits_):
results.append((candidate_results[idx][1], i[1]*100))
sorted_results = sorted(results, key=lambda x: x[1], reverse=True)
return sorted_results
def format_for_gradio(inp):
retval = ''
for idx, i in enumerate(inp):
if idx == len(inp)-1:
retval += i.split('.')[0]
break
retval += f'''{i.split('.')[0]} | '''
return retval
def smart_synonyms(text, level):
parser = argparse.ArgumentParser()
parser.add_argument("--bert_model", default="kanishka/GlossBERT", type=str)
parser.add_argument("--no_cuda", default=False, action='store_true', help="Whether not to use CUDA when available")
args, unknown = parser.parse_known_args()
location = 0
word = ''
tokens = tokenizer4.tokenize(text)
school_to_level = {"Elementary Level":'1', "Middle School Level":'2', "High School Level":'3', "College Level":'4'}
for idx, i in enumerate(tokens):
if i[0] == '@':
location = idx
text = text.replace('@', '')
word = tokens[location]
break
raw_syns = []
raw_defs = []
raw_scores = []
syns = []
defs = []
scores = []
preds = infer(text, location, location+1, args)
for i in preds:
if not i[0][1].split('.')[0] in data[school_to_level[level]]:
continue
raw_syns.append(i[0][1])
raw_defs.append(i[0][0])
raw_scores.append(i[1])
if i[1] > 5:
syns.append(i[0][1])
defs.append(i[0][0])
scores.append(i[1])
if not syns:
top_syns = int(len(raw_syns)*.25//1+1)
syns = raw_syns[:top_syns]
defs = raw_defs[:top_syns]
scores = raw_scores[:top_syns]
cleaned_syns = format_for_gradio(syns)
cleaend_defs = format_for_gradio(defs)
return f'{cleaned_syns}: Definition- {cleaend_defs} | '
with gr.Blocks(title="Automatic Literacy and Speech Assesment") as demo:
gr.HTML("""<center><h7 style="font-size: 35px">Automatic Literacy and Speech Assesment</h7></center>""")
gr.HTML("""<center><h7 style="font-size: 15px">This may take 60s to generate all statistics | Text with over 1000 words may take longer</h7></center>""")
with gr.Column():
with gr.Row():
with gr.Box():
with gr.Column():
with gr.Group():
with gr.Tabs():
with gr.TabItem("Text"):
in_text = gr.Textbox(label="Input Text Or Speech For Analysis")
grade = gr.Button("Grade Your Text")
with gr.TabItem("Speech"):
audio_file = gr.Audio(source="microphone",type="filepath")
grade1 = gr.Button("Grade Your Speech")
with gr.Group():
gr.Markdown("""Reading Level Based Synonyms | Enter a sentence with the word you want a synonym | Add an @ before the target word for synonym, e.g. - "Today is an @amazing day"- target word = amazing" """)
words = gr.Textbox(label="Text with word for synonyms")
lvl = gr.Dropdown(choices=["Elementary Level", "Middle School Level", "High School Level", "College Level" ], label="Intended Reading Level For Synonym")
get_syns = gr.Button("Get Synonyms")
reccos = gr.Label()
with gr.Box():
diff_output = gr.Label(label='Difficulty Level',show_label=True)
gr.Markdown("Difficulty Score Across Text")
plotter = gr.Plot()
with gr.Row():
with gr.Box():
div_output = gr.Label(label='Diversity Score', show_label=False)
gr.Markdown("Diversity Heatmap | Blue cells are omitted from score. | Darker = More Diverse")
interpretation = gr.components.Interpretation(in_text, label="Diversity Heatmap")
gr.Markdown("Find Similar Words | Word must be part of analysis text box | Enter only one word at a time")
words1 = gr.Textbox(label="Word For Similarity")
find_sim = gr.Button("Find Similar Words")
sims = gr.Label()
with gr.Box():
gr.Markdown("Relative Difficulty Heatmap- How confusing the text is in that area of text")
interpretation2 = gr.components.Interpretation(in_text, label="Difficulty Heatmap")
with gr.Box():
vocab_output = gr.Label(label='Vocabulary Level', show_label=True)
gr.Markdown("Vocabulary Level Heatmap | Darker = Higher Level | Blue cells are not in vocabulary")
interpretation3 = gr.components.Interpretation(in_text, label="Interpretation of Text")
with gr.Row():
with gr.Box():
with gr.Group():
target = gr.Textbox(label="Target Text")
with gr.Group():
audio_file1 = gr.Audio(source="microphone",type="filepath")
b1 = gr.Button("Grade Your Pronunciation")
with gr.Box():
some_val = gr.Label()
text = gr.Textbox()
phones = gr.Textbox()
gr.Markdown("""**Reading Difficulty**- Automatically determining how difficult something is to read is a difficult task as underlying
semantics are relevant. To efficiently compute text difficulty, a Distil-Bert pre-trained model is fine-tuned for regression
using The CommonLit Ease of Readability (CLEAR) Corpus. This model scores the text on how difficult it would be for a student
to understand.
""")
gr.Markdown("""**Lexical Diversity**- The lexical diversity score is computed by taking the ratio of unique similar words to total similar words
. The similarity is computed as if the cosine similarity of the word2vec embeddings is greater than .75. It is bad writing/speech
practice to repeat the same words when it's possible not to. Vocabulary diversity is generally computed by taking the ratio of unique
strings/ total strings. This does not give an indication if the person has a large vocabulary or if the topic does not require a diverse
vocabulary to express it. This algorithm only scores the text based on how many times a unique word was chosen for a semantic idea, e.g.,
"Forest" and "Woods" are 2 words to represent one semantic idea, so this would receive a 100% lexical diversity score, vs using the word
"Forest" twice would yield you a 25% diversity score, (1 unique word/ 2 total words)
""")
gr.Markdown("""**Speech Pronunciation Scoring-**- The Wave2Vec 2.0 model is utilized to convert audio into text in real-time. The model predicts words or phonemes
(smallest unit of speech distinguishing one word (or word element) from another) from the input audio from the user. Due to the nature of the model,
users with poor pronunciation get inaccurate results. This project attempts to score pronunciation by asking a user to read a target excerpt into the
microphone. We then pass this audio through Wave2Vec to get the inferred intended words. We measure the loss as the Levenshtein distance between the
target and actual transcripts- the Levenshtein distance between two words is the minimum number of single-character edits required to change one word
into the other.
""")
grade.click(reading_difficulty, inputs=in_text, outputs=diff_output)
grade.click(calculate_diversity, inputs=in_text, outputs=[interpretation, div_output])
grade.click(sliding_window, inputs=in_text, outputs=[plotter, interpretation2])
grade.click(vocab_level_inter, inputs=in_text, outputs=[interpretation3, vocab_output])
grade1.click(speech_to_score, inputs=audio_file, outputs=diff_output)
b1.click(speech_to_text, inputs=[audio_file1, target], outputs=[text, some_val, phones])
get_syns.click(smart_synonyms, inputs=[words, lvl], outputs=reccos)
find_sim.click(get_sim_words, inputs=[in_text, words1], outputs=sims)
demo.launch(debug=True) |