Spaces:
Runtime error
Runtime error
File size: 9,112 Bytes
ea36477 a4e5c29 8218bc2 a4e5c29 8218bc2 a4e5c29 8218bc2 a4e5c29 8218bc2 a4e5c29 8218bc2 a4e5c29 068ae41 9c26cec 8218bc2 7319f3e 8218bc2 1d78b57 a4e5c29 8218bc2 a4e5c29 8218bc2 a4e5c29 8218bc2 a4e5c29 8218bc2 a4e5c29 8218bc2 a4e5c29 8218bc2 a4e5c29 8218bc2 a4e5c29 8218bc2 a4e5c29 8218bc2 a4e5c29 8218bc2 a4e5c29 8218bc2 a4e5c29 8218bc2 a4e5c29 8218bc2 a4e5c29 8218bc2 a4e5c29 8218bc2 a4e5c29 8218bc2 a4e5c29 8218bc2 a4e5c29 8218bc2 a4e5c29 8218bc2 a4e5c29 8218bc2 a4e5c29 8218bc2 a4e5c29 8218bc2 a4e5c29 8218bc2 a4e5c29 8218bc2 a4e5c29 8218bc2 a4e5c29 8218bc2 7da0423 a4e5c29 7da0423 a4e5c29 a704965 a4e5c29 7da0423 a4e5c29 8218bc2 a4e5c29 8218bc2 a4e5c29 8218bc2 068ae41 a4e5c29 8218bc2 a4e5c29 288234d a4e5c29 8218bc2 2801f34 b71cdd2 a4e5c29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
import csv
import statistics
import string
import gensim.downloader as api
import gradio as gr
import nltk
import pandas as pd
import readability
import seaborn as sns
import torch
from fuzzywuzzy import fuzz
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from sklearn.metrics.pairwise import cosine_similarity
from transformers import DistilBertTokenizer
from transformers import pipeline
nltk.download('cmudict')
nltk.download('stopwords')
nltk.download('punkt')
glove_vectors = api.load('glove-wiki-gigaword-100')
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
device = torch.device('cuda' if torch.cuda.is_available else 'cpu')
# loading model
PATH = 'pytorchBERTmodel'
model = torch.load(PATH, map_location=torch.device('cpu'))
model.eval()
model.to('cpu')
p = pipeline("automatic-speech-recognition")
w2v = dict({})
for idx, key in enumerate(glove_vectors.key_to_index.keys()):
w2v[key] = glove_vectors.get_vector(key)
def calculate_diversity(text):
stop_words = set(stopwords.words('english'))
for i in string.punctuation:
stop_words.add(i)
tokenized_text = word_tokenize(text)
tokenized_text = list(map(lambda word: word.lower(), tokenized_text))
sim_words = {}
if len(tokenized_text) <= 1:
return 1, "More Text Required"
for idx, anc_word in enumerate(tokenized_text):
if anc_word in stop_words:
continue
if idx in sim_words:
sim_words[idx] = sim_words[idx]
continue
vocab = [anc_word]
for pos, comp_word in enumerate(tokenized_text):
try:
if not comp_word in stop_words and cosine_similarity(w2v[anc_word].reshape(1, -1),
w2v[comp_word].reshape(1, -1)) > .75:
vocab.append(comp_word)
sim_words[idx] = vocab
except KeyError:
continue
scores = {}
for k, value in sim_words.items():
if len(value) == 1:
scores[k] = 1
continue
t_sim = len(value) - 1
t_rep = (len(value) - 1) - (len(set(value)))
score = ((t_sim - t_rep) / t_sim) ** 2
scores[key] = score
mean_score = 0
total = 0
for value in scores.values():
mean_score += value
total += 1
return scores, mean_score / total
def dict_to_list(dictionary, max_size=10):
outer_list = []
inner_list = []
for value in dictionary.values():
inner_list.append(value)
if len(inner_list) == max_size:
outer_list.append(inner_list)
inner_list = []
if len(inner_list) > 0:
outer_list.append(inner_list)
return outer_list
def heatmap(scores, df):
total = 0
loops = 0
for ratio in scores.values():
# conditional to visualize the difference between no ratio and a 0 ratio score
if ratio != -.3:
total += ratio
loops += 1
diversity_average = total / loops
return sns.heatmap(df, cmap='gist_gray_r', vmin=-.3).set(
title='Word Diversity Score Heatmap (Average Score: ' + str(diversity_average) + ')')
def stats(text):
results = readability.getmeasures(text, lang='en')
return results
def predict(text, tokenizer=tokenizer):
model.eval()
model.to('cpu')
def prepare_data(text, tokenizer):
input_ids = []
attention_masks = []
encoded_text = tokenizer.encode_plus(
text,
truncation=True,
add_special_tokens=True,
max_length=315,
pad_to_max_length=True,
return_attention_mask=True,
return_tensors='pt'
)
input_ids.append(encoded_text['input_ids'])
attention_masks.append(encoded_text['attention_mask'])
input_ids = torch.cat(input_ids, dim=0)
attention_masks = torch.cat(attention_masks, dim=0)
return {'input_ids': input_ids, 'attention_masks': attention_masks}
tokenized_example_text = prepare_data(text, tokenizer)
with torch.no_grad():
result = model(
tokenized_example_text['input_ids'].to('cpu'),
attention_mask=tokenized_example_text['attention_masks'].to('cpu'),
return_dict=True
).logits
return result
def reading_difficulty(excerpt):
if len(excerpt) == 0:
return "No Text Provided"
windows = []
words = tokenizer.tokenize(excerpt)
if len(words) > 301:
for idx, text in enumerate(words):
if idx % 300 == 0:
if idx <= len(words) - 301:
x = ' '.join(words[idx: idx + 299])
windows.append(x)
win_preds = []
for text in windows:
win_preds.append(predict(text, tokenizer).item())
result = statistics.mean(win_preds)
score = -(result * 1.786 + 6.4) + 10
return score
else:
result = predict(excerpt).item()
score = -(result * 1.786 + 6.4) + 10
return score
def calculate_stats(file_name, data_index):
# unicode escape only for essays
with open(file_name, encoding='unicode_escape') as f:
information = {'lines': 0, 'words_per_sentence': 0, 'words': 0, 'syll_per_word': 0, 'characters_per_word': 0,
'reading_difficulty': 0}
reader = csv.reader(f)
for line in reader:
if len(line[data_index]) < 100:
continue
# if detect(line[data_index][len(line[data_index]) -400: len(line[data_index])-1]) == 'en':
try:
stat = stats(line[data_index])
except ValueError:
continue
information['lines'] += 1
print(information['lines'])
information['words_per_sentence'] += stat['sentence info']['words_per_sentence']
information['words'] += stat['sentence info']['words']
information['syll_per_word'] += stat['sentence info']['syll_per_word']
information['characters_per_word'] += stat['sentence info']['characters_per_word']
information['reading_difficulty'] += reading_difficulty(line[data_index])
for i in information:
if i != 'lines' and i != 'words':
information[i] /= information['lines']
return information
def transcribe(audio):
# speech to text using pipeline
text = p(audio)["text"]
transcription.append(text)
return text
def compute_score(target, actual):
target = target.lower()
actual = actual.lower()
return fuzz.ratio(target, actual)
def phon(text):
alph = nltk.corpus.cmudict.dict()
text = word_tokenize(text)
pronun = []
for word in text:
try:
pronun.append(alph[word][0])
except Exception as e:
pronun.append(word)
return pronun
def gradio_fn(text, audio, target, actual_audio):
if text is None and audio is None and target is None and actual_audio is None:
return "No Inputs", "No Inputs", "No Inputs", "No Inputs"
speech_score = 0
if actual_audio is not None:
actual = p(actual_audio)["text"]
speech_score = compute_score(target, actual)
return "Difficulty Score: " + str(reading_difficulty(actual)), "Transcript: " + str(
actual.lower()), "Diversity Score: " + str(calculate_diversity(target)[1]), "Speech Score: " + str(speech_score)
div = calculate_diversity(text)
transcription = []
if audio is not None:
text = p(audio)["text"]
transcription.append(text)
state = div[0]
return "Difficulty Score: " + str(reading_difficulty(text)), "Transcript: " + str(
transcription[-1].lower()), "Diversity Score: " + str(div[1]), "No Inputs"
return "Difficulty Score: " + str(reading_difficulty(text)), "Diversity Score: " + str(
div[1]), "No Audio Provided", "No Inputs"
def plot():
text = state
diversity = calculate_diversity(text)[0]
df = pd.DataFrame(dict_to_list(diversity))
return heatmap(diversity, df)
example_data = []
x = 0
with open('train.csv') as f:
reader = csv.reader(f)
next(reader)
for line in reader:
example_data.append([line[3]])
x += 1
if x > 100:
break
state = {}
interface = gr.Interface(
fn=gradio_fn,
inputs=[gr.components.Textbox(
label="Text",
lines = 6),
gr.components.Audio(
label="Speech Translation",
source="microphone",
type="filepath"),
gr.components.Textbox(
label="Target Text to Recite"
),
gr.components.Audio(
label="Read Text Above for Score",
source="microphone",
type="filepath")
],
outputs=["text", "text", "text", "text"],
theme="huggingface",
description="Enter text or speak into your microphone to have your text analyzed!",
rounded=True,
container=True
).launch() |