File size: 9,112 Bytes
ea36477
a4e5c29
 
8218bc2
a4e5c29
8218bc2
 
a4e5c29
 
 
8218bc2
a4e5c29
 
 
8218bc2
 
a4e5c29
8218bc2
 
 
 
 
 
 
 
 
 
 
 
a4e5c29
068ae41
9c26cec
8218bc2
 
7319f3e
8218bc2
 
 
 
1d78b57
a4e5c29
8218bc2
 
a4e5c29
 
 
 
8218bc2
a4e5c29
 
 
 
 
8218bc2
a4e5c29
 
 
 
 
 
8218bc2
a4e5c29
8218bc2
a4e5c29
8218bc2
a4e5c29
 
 
 
8218bc2
a4e5c29
8218bc2
a4e5c29
 
8218bc2
a4e5c29
 
 
 
 
8218bc2
a4e5c29
 
8218bc2
a4e5c29
8218bc2
a4e5c29
8218bc2
a4e5c29
 
8218bc2
a4e5c29
 
 
8218bc2
a4e5c29
8218bc2
 
 
 
 
a4e5c29
 
8218bc2
 
 
 
 
 
 
 
 
a4e5c29
 
 
8218bc2
a4e5c29
 
 
 
 
 
 
 
 
 
8218bc2
 
 
a4e5c29
 
 
8218bc2
 
a4e5c29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8218bc2
 
a4e5c29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8218bc2
 
a4e5c29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8218bc2
 
a4e5c29
 
 
 
 
8218bc2
 
a4e5c29
 
 
 
8218bc2
 
a4e5c29
 
 
 
 
 
 
 
 
 
8218bc2
 
7da0423
a4e5c29
 
 
7da0423
a4e5c29
 
 
 
a704965
 
a4e5c29
7da0423
a4e5c29
 
 
 
 
 
 
 
 
8218bc2
 
a4e5c29
 
 
 
 
8218bc2
a4e5c29
8218bc2
 
068ae41
a4e5c29
 
 
 
 
 
 
8218bc2
 
 
 
a4e5c29
288234d
 
a4e5c29
 
 
 
 
 
 
 
 
 
 
 
 
 
8218bc2
 
 
2801f34
b71cdd2
a4e5c29
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import csv
import statistics
import string

import gensim.downloader as api
import gradio as gr
import nltk
import pandas as pd
import readability
import seaborn as sns
import torch
from fuzzywuzzy import fuzz
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from sklearn.metrics.pairwise import cosine_similarity
from transformers import DistilBertTokenizer
from transformers import pipeline

nltk.download('cmudict')

nltk.download('stopwords')

nltk.download('punkt')

glove_vectors = api.load('glove-wiki-gigaword-100')

tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
device = torch.device('cuda' if torch.cuda.is_available else 'cpu')

# loading model
PATH = 'pytorchBERTmodel'
model = torch.load(PATH, map_location=torch.device('cpu'))
model.eval()

model.to('cpu')

p = pipeline("automatic-speech-recognition")

w2v = dict({})
for idx, key in enumerate(glove_vectors.key_to_index.keys()):
    w2v[key] = glove_vectors.get_vector(key)


def calculate_diversity(text):
    stop_words = set(stopwords.words('english'))
    for i in string.punctuation:
        stop_words.add(i)

    tokenized_text = word_tokenize(text)
    tokenized_text = list(map(lambda word: word.lower(), tokenized_text))
    sim_words = {}
    if len(tokenized_text) <= 1:
        return 1, "More Text Required"

    for idx, anc_word in enumerate(tokenized_text):
        if anc_word in stop_words:
            continue
        if idx in sim_words:
            sim_words[idx] = sim_words[idx]
            continue

        vocab = [anc_word]

        for pos, comp_word in enumerate(tokenized_text):

            try:
                if not comp_word in stop_words and cosine_similarity(w2v[anc_word].reshape(1, -1),
                                                                     w2v[comp_word].reshape(1, -1)) > .75:
                    vocab.append(comp_word)

                sim_words[idx] = vocab

            except KeyError:
                continue

    scores = {}
    for k, value in sim_words.items():
        if len(value) == 1:
            scores[k] = 1
            continue

        t_sim = len(value) - 1
        t_rep = (len(value) - 1) - (len(set(value)))

        score = ((t_sim - t_rep) / t_sim) ** 2

        scores[key] = score

    mean_score = 0
    total = 0

    for value in scores.values():
        mean_score += value
        total += 1

    return scores, mean_score / total


def dict_to_list(dictionary, max_size=10):
    outer_list = []
    inner_list = []

    for value in dictionary.values():
        inner_list.append(value)
        if len(inner_list) == max_size:
            outer_list.append(inner_list)
            inner_list = []
    if len(inner_list) > 0:
        outer_list.append(inner_list)
    return outer_list


def heatmap(scores, df):
    total = 0
    loops = 0

    for ratio in scores.values():
        # conditional to visualize the difference between no ratio and a 0 ratio score
        if ratio != -.3:
            total += ratio
            loops += 1

    diversity_average = total / loops

    return sns.heatmap(df, cmap='gist_gray_r', vmin=-.3).set(
        title='Word Diversity Score Heatmap (Average Score: ' + str(diversity_average) + ')')


def stats(text):
    results = readability.getmeasures(text, lang='en')
    return results


def predict(text, tokenizer=tokenizer):
    model.eval()
    model.to('cpu')

    def prepare_data(text, tokenizer):
        input_ids = []
        attention_masks = []

        encoded_text = tokenizer.encode_plus(
            text,
            truncation=True,
            add_special_tokens=True,
            max_length=315,
            pad_to_max_length=True,
            return_attention_mask=True,
            return_tensors='pt'
        )

        input_ids.append(encoded_text['input_ids'])
        attention_masks.append(encoded_text['attention_mask'])

        input_ids = torch.cat(input_ids, dim=0)
        attention_masks = torch.cat(attention_masks, dim=0)
        return {'input_ids': input_ids, 'attention_masks': attention_masks}

    tokenized_example_text = prepare_data(text, tokenizer)
    with torch.no_grad():
        result = model(
            tokenized_example_text['input_ids'].to('cpu'),
            attention_mask=tokenized_example_text['attention_masks'].to('cpu'),
            return_dict=True
        ).logits

    return result


def reading_difficulty(excerpt):
    if len(excerpt) == 0:
        return "No Text Provided"
    windows = []
    words = tokenizer.tokenize(excerpt)

    if len(words) > 301:
        for idx, text in enumerate(words):
            if idx % 300 == 0:
                if idx <= len(words) - 301:
                    x = ' '.join(words[idx: idx + 299])
                    windows.append(x)

        win_preds = []
        for text in windows:
            win_preds.append(predict(text, tokenizer).item())
        result = statistics.mean(win_preds)
        score = -(result * 1.786 + 6.4) + 10
        return score

    else:
        result = predict(excerpt).item()
        score = -(result * 1.786 + 6.4) + 10
        return score


def calculate_stats(file_name, data_index):
    # unicode escape only for essays
    with open(file_name, encoding='unicode_escape') as f:
        information = {'lines': 0, 'words_per_sentence': 0, 'words': 0, 'syll_per_word': 0, 'characters_per_word': 0,
                       'reading_difficulty': 0}
        reader = csv.reader(f)

        for line in reader:

            if len(line[data_index]) < 100:
                continue

            # if detect(line[data_index][len(line[data_index]) -400: len(line[data_index])-1]) == 'en':

            try:
                stat = stats(line[data_index])

            except ValueError:
                continue

            information['lines'] += 1
            print(information['lines'])
            information['words_per_sentence'] += stat['sentence info']['words_per_sentence']
            information['words'] += stat['sentence info']['words']
            information['syll_per_word'] += stat['sentence info']['syll_per_word']
            information['characters_per_word'] += stat['sentence info']['characters_per_word']
            information['reading_difficulty'] += reading_difficulty(line[data_index])

    for i in information:
        if i != 'lines' and i != 'words':
            information[i] /= information['lines']

    return information


def transcribe(audio):
    # speech to text using pipeline
    text = p(audio)["text"]
    transcription.append(text)
    return text


def compute_score(target, actual):
    target = target.lower()
    actual = actual.lower()
    return fuzz.ratio(target, actual)


def phon(text):
    alph = nltk.corpus.cmudict.dict()
    text = word_tokenize(text)
    pronun = []
    for word in text:
        try:
            pronun.append(alph[word][0])
        except Exception as e:
            pronun.append(word)
    return pronun


def gradio_fn(text, audio, target, actual_audio):
    if text is None and audio is None and target is None and actual_audio is None:
        return "No Inputs", "No Inputs", "No Inputs", "No Inputs"
    speech_score = 0

    if actual_audio is not None:
        actual = p(actual_audio)["text"]
        speech_score = compute_score(target, actual)

        return "Difficulty Score: " + str(reading_difficulty(actual)), "Transcript: " + str(
            actual.lower()), "Diversity Score: " + str(calculate_diversity(target)[1]), "Speech Score: " + str(speech_score)
    div = calculate_diversity(text)
    transcription = []
    if audio is not None:
        text = p(audio)["text"]
        transcription.append(text)
        state = div[0]
        return "Difficulty Score: " + str(reading_difficulty(text)), "Transcript: " + str(
            transcription[-1].lower()), "Diversity Score: " + str(div[1]), "No Inputs"

    return "Difficulty Score: " + str(reading_difficulty(text)), "Diversity Score: " + str(
        div[1]), "No Audio Provided", "No Inputs"


def plot():
    text = state
    diversity = calculate_diversity(text)[0]
    df = pd.DataFrame(dict_to_list(diversity))
    return heatmap(diversity, df)



example_data = []
x = 0
with open('train.csv') as f:
    reader = csv.reader(f)
    next(reader)
    for line in reader:
        example_data.append([line[3]])
        x += 1
        if x > 100:
            break

state = {}
interface = gr.Interface(
    fn=gradio_fn,
    inputs=[gr.components.Textbox(
        label="Text",
        lines = 6),
        gr.components.Audio(
            label="Speech Translation",
            source="microphone",
            type="filepath"),
        gr.components.Textbox(
            label="Target Text to Recite"
        ),
        gr.components.Audio(
            label="Read Text Above for Score",
            source="microphone",
            type="filepath")
    ],

    outputs=["text", "text", "text", "text"],
    theme="huggingface",
    description="Enter text or speak into your microphone to have your text analyzed!",
    rounded=True,
    container=True

).launch()