Spaces:
Sleeping
Sleeping
File size: 12,048 Bytes
cefcefa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
import os
import torch
import h5py
import math
import random
from torch.utils.data import DataLoader
from pathlib import Path
from typing import List, Callable, Tuple
from tqdm import tqdm
from PIL import Image
from waifuset.classes import Dataset, ImageInfo
from waifuset.utils import log_utils
from .utils import encode_images, load_clip_models, quality_rating
class LaionImageInfo:
def __init__(
self,
img_path=None,
im_emb_arr=None,
rating=None,
im_emb_arr_flipped=None,
num_repeats=1,
):
self.img_path = img_path
self.im_emb_arr = im_emb_arr
self.rating = rating
self.im_emb_arr_flipped = im_emb_arr_flipped
self.num_repeats = num_repeats
class LaionDataset:
def __init__(
self,
source,
cache_to_disk=True,
cache_path=None,
batch_size=1,
clip_batch_size=4,
model2=None,
preprocess=None,
input_size=768,
rating_func: Callable = quality_rating,
repeating_func: Callable = None,
shuffle=True,
flip_aug: bool = True,
device='cuda'
):
if model2 is None or preprocess is None:
model2, preprocess = load_clip_models(device) # RN50x64
if cache_to_disk and cache_path is None:
raise ValueError("cache_path must be specified when cache_to_disk is True.")
self.source = source
self.cache_to_disk = cache_to_disk
self.cache_path = Path(cache_path)
self.model2, self.preprocess = model2, preprocess
self.input_size = input_size
self.rating_func = rating_func
self.batch_size = batch_size
self.encoder_batch_size = clip_batch_size
self.shuffle = shuffle
self.flip_aug = flip_aug
self.device = device
dataset: Dataset = Dataset(source, verbose=True)
self.image_data = []
for img_key, img_info in tqdm(dataset.items(), desc='prepare dataset'):
img_path = img_info.image_path
rating = self.rating_func(img_info)
laion_image_info = LaionImageInfo(
img_path=img_path,
rating=rating,
)
self.register_image_info(laion_image_info)
rating_counter = {}
for laion_img_info in tqdm(self.image_data, desc='calculating num repeats (1/2)'):
# to list
rating: torch.Tensor = laion_img_info.rating
rating_counter.setdefault(rating, 0)
rating_counter[rating] += 1
for laion_img_info in tqdm(self.image_data, desc='calculating num repeats (2/2)'):
benchmark = 30000
num_repeats = benchmark / rating_counter[laion_img_info.rating]
prob = num_repeats - math.floor(num_repeats)
num_repeats = math.floor(num_repeats) if random.random() < prob else math.ceil(num_repeats)
laion_img_info.num_repeats = max(1, num_repeats)
self.cache_embs()
self.batches = self.make_batches()
def register_image_info(self, image_info: LaionImageInfo):
self.image_data.append(image_info)
def cache_embs(self):
self.cache_path.parent.mkdir(parents=True, exist_ok=True)
not_cached = [] # list of (image_info, flipped)
num_cached = 0
# load cache
if self.cache_to_disk:
pbar = tqdm(total=len(self.image_data), desc='loading cache')
def load_cached_emb(h5, image_info: LaionImageInfo, flipped=False):
nonlocal num_cached
image_key = image_info.img_path.stem
if flipped:
image_key = image_key + '_flipped'
if image_key in h5:
im_emb_arr = torch.from_numpy(f[image_key][:])
if im_emb_arr.shape[-1] != self.input_size:
raise ValueError(f"Input size mismatched. Except {self.input_size} dim, but got {im_emb_arr.shape[-1]} dim loaded. Please check your cache file.")
assert im_emb_arr.device == torch.device('cpu'), "flipped image emb should be on cpu"
if flipped:
image_info.im_emb_arr_flipped = im_emb_arr
else:
image_info.im_emb_arr = im_emb_arr
num_cached += 1
else:
not_cached.append((image_info, flipped))
if not is_h5_file(self.cache_path):
# create cache
log_utils.info(f"cache file not found, creating new cache file: {self.cache_path}")
with h5py.File(self.cache_path, 'w') as f:
pass
else:
log_utils.info(f"loading cache file: {self.cache_path}")
with h5py.File(self.cache_path, 'r') as f:
for image_info in self.image_data:
load_cached_emb(f, image_info, flipped=False)
if self.flip_aug:
load_cached_emb(f, image_info, flipped=True)
pbar.update()
pbar.close()
else:
not_cached = [(image_info, False) for image_info in self.image_data]
if self.flip_aug:
not_cached += [(image_info, True) for image_info in self.image_data]
# encode not-cached images
if len(not_cached) == 0:
log_utils.info("all images are cached.")
else:
log_utils.info(f"number of cached instances: {num_cached}")
log_utils.info(f"number of not cached instances: {len(not_cached)}")
batches = [not_cached[i:i + self.encoder_batch_size] for i in range(0, len(not_cached), self.encoder_batch_size)]
pbar = tqdm(total=len(batches), desc='encoding images')
def cache_batch_embs(h5, batch: List[Tuple[LaionImageInfo, bool]]):
try:
images = [Image.open(image_info.img_path) if not flipped else Image.open(image_info.img_path).transpose(Image.FLIP_LEFT_RIGHT) for image_info, flipped in batch]
except:
log_utils.error(f"Error occurred when loading one of the images: {[image_info.img_path for image_info, flipped in batch]}")
raise
im_emb_arrs = encode_images(images, self.model2, self.preprocess, device=self.device) # shape: [batch_size, input_size]
for i, item in enumerate(batch):
image_info, flipped = item
im_emb_arr = im_emb_arrs[i]
shape_size = len(im_emb_arr.shape)
if shape_size == 1:
im_emb_arr = im_emb_arr.unsqueeze(0)
elif shape_size == 3:
im_emb_arr = im_emb_arr.squeeze(1)
image_key = image_info.img_path.stem
assert im_emb_arr.device == torch.device('cpu'), "flipped image emb should be on cpu"
if flipped:
image_key = image_key + '_flipped'
image_info.im_emb_arr_flipped = im_emb_arr
else:
image_info.im_emb_arr = im_emb_arr
if self.cache_to_disk:
if image_key in h5:
continue
h5.create_dataset(image_key, data=im_emb_arr.cpu().numpy())
try:
h5 = h5py.File(self.cache_path, 'a') if self.cache_to_disk else None
for batch in batches:
cache_batch_embs(h5, batch)
pbar.update()
finally:
if h5:
h5.close()
pbar.close()
def make_batches(self):
batches = []
repeated_image_data = []
for image_info in self.image_data:
repeated_image_data += [image_info] * image_info.num_repeats
log_utils.info(f"number of instances (repeated): {len(repeated_image_data)}")
for i in range(0, len(repeated_image_data), self.batch_size):
batch = repeated_image_data[i:i + self.batch_size]
batches.append(batch)
if self.shuffle:
random.shuffle(batches)
return batches
def __getitem__(self, index):
batch = self.batches[index]
im_emb_arrs = []
ratings = []
for image_info in batch:
flip = self.flip_aug and random.random() > 0.5
if not flip:
im_emb_arr = image_info.im_emb_arr
else:
im_emb_arr = image_info.im_emb_arr_flipped
rating = image_info.rating
im_emb_arrs.append(im_emb_arr)
ratings.append(rating)
im_emb_arrs = torch.cat(im_emb_arrs, dim=0)
ratings = torch.tensor(ratings).unsqueeze(-1)
sample = dict(
im_emb_arrs=im_emb_arrs,
ratings=ratings,
)
return sample
def __len__(self):
return len(self.batches)
def collate_fn(batch):
return batch[0]
def get_rating_func(rating_func_type: str):
if rating_func_type == 'quality':
from .utils import quality_rating
rating_func = quality_rating
else:
raise ValueError(f"Invalid rating type: {rating_func_type}")
return rating_func
def prepare_dataloader(
dataset_source,
cache_to_disk=True,
cache_path=None,
batch_size=1,
clip_batch_size=4,
model2=None,
preprocess=None,
input_size=768,
rating_func: Callable = quality_rating,
shuffle=True,
flip_aug: bool = True,
device='cuda',
persistent_workers=False,
max_data_loader_n_workers=0,
):
dataset = LaionDataset(
dataset_source,
cache_to_disk=cache_to_disk,
cache_path=cache_path,
batch_size=batch_size,
clip_batch_size=clip_batch_size,
model2=model2,
preprocess=preprocess,
input_size=input_size,
rating_func=rating_func,
shuffle=shuffle,
flip_aug=flip_aug,
device=device,
)
dataloader = DataLoader(
dataset,
batch_size=1, # fix to 1
shuffle=shuffle,
num_workers=max_data_loader_n_workers,
persistent_workers=persistent_workers,
collate_fn=collate_fn,
)
return dataset, dataloader
def is_h5_file(cache_path):
if not cache_path or not h5py.is_hdf5(cache_path):
return False
return True
# def make_train_data(
# dataset_source,
# rating_func: Callable = quality_rating,
# batch_size=1,
# flip_aug: bool = True,
# device='cuda'
# ):
# model2, preprocess = clip.load("ViT-L/14", device=device) # RN50x64
# dataset = Dataset.from_source(dataset_source, verbose=True)
# x_train = []
# y_train = []
# batches = [dataset[i:i + batch_size] for i in range(0, len(dataset), batch_size)]
# for batch in tqdm(batches, desc='encoding images', smoothing=1):
# im_emb_arr = encode_images([d.pil_img for d in batch], model2, preprocess, device=device) # shape: [batch_size, 768]
# ratings = torch.tensor([rating_func(data) for data in batch]).unsqueeze(-1).to(device) # shape: [batch_size, 1]
# x_train.append(im_emb_arr)
# y_train.append(ratings)
# x_train = torch.cat(x_train, dim=0)
# y_train = torch.cat(y_train, dim=0)
# return x_train, y_train
def prepare_dtype(mixed_precision: str):
weight_dtype = torch.float32
if mixed_precision == "fp16":
weight_dtype = torch.float16
elif mixed_precision == "bf16":
weight_dtype = torch.bfloat16
return weight_dtype
def save_model(model, save_path, epoch=None):
save_path = str(save_path)
os.makedirs(os.path.dirname(save_path), exist_ok=True)
if epoch is not None:
save_path = save_path.replace('.pth', f'_ep{epoch}.pth')
torch.save(model.state_dict(), save_path)
return save_path
|