Spaces:
Sleeping
Sleeping
File size: 2,468 Bytes
cefcefa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
import torch
import clip
import os
from PIL import Image
from typing import List
from .utils import get_model_cls
WAIFU_FILTER_V1_MODEL_REPO = 'Eugeoter/waifu-filter-v1/waifu-filter-v1.pth'
def download_from_url(url):
from huggingface_hub import hf_hub_download
split = url.split("/")
username, repo_id, model_name = split[-3], split[-2], split[-1]
model_path = hf_hub_download(f"{username}/{repo_id}", model_name)
return model_path
def load_model(model_path: str = None, model_type='mlp', input_size=768, device: str = 'cuda', dtype=torch.float32):
model_cls = get_model_cls(model_type)
model = model_cls(input_size=input_size)
if not os.path.isfile(model_path):
model_path = download_from_url(model_path)
s = torch.load(model_path, map_location=device)
model.load_state_dict(s)
model.to(device=device, dtype=dtype)
return model
def normalized(a: torch.Tensor, order=2, dim=-1):
l2 = a.norm(order, dim, keepdim=True)
l2[l2 == 0] = 1
return a / l2
@torch.no_grad()
def encode_images(images: List[Image.Image], model2, preprocess, device='cuda') -> torch.Tensor:
if isinstance(images, Image.Image):
images = [images]
image_tensors = [preprocess(img).unsqueeze(0) for img in images]
image_batch = torch.cat(image_tensors).to(device)
image_features = model2.encode_image(image_batch)
im_emb_arr = normalized(image_features).cpu().float()
return im_emb_arr
class WaifuScorer:
def __init__(self, model_path: str = WAIFU_FILTER_V1_MODEL_REPO, model_type='mlp', device: str = None, dtype=torch.float32):
print(f"loading model from `{model_path}`...")
device = device or ('cuda' if torch.cuda.is_available() else 'cpu')
self.mlp = load_model(model_path, model_type=model_type, input_size=768, device=device, dtype=dtype)
self.mlp.eval()
self.model2, self.preprocess = clip.load("ViT-L/14", device=device)
self.device = self.mlp.device
self.dtype = self.mlp.dtype
print(f"model loaded: cls={model_type} | device={self.device} | dtype={self.dtype}")
@torch.no_grad()
def predict(self, images: List[Image.Image]) -> float:
images = encode_images(images, self.model2, self.preprocess, device=self.device).to(device=self.device, dtype=self.dtype)
predictions = self.mlp(images)
scores = predictions.clamp(0, 10).cpu().numpy().reshape(-1).tolist()
return scores
|