Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,451 Bytes
3b609b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import warnings
from typing import TYPE_CHECKING, Any, Optional
import torch
from peft.tuners.xlora.model import XLoraModel
from .config import PeftConfig
from .mixed_model import PeftMixedModel
from .peft_model import (
PeftModel,
PeftModelForCausalLM,
PeftModelForFeatureExtraction,
PeftModelForQuestionAnswering,
PeftModelForSeq2SeqLM,
PeftModelForSequenceClassification,
PeftModelForTokenClassification,
)
from .tuners import (
AdaLoraConfig,
AdaLoraModel,
AdaptionPromptConfig,
BOFTConfig,
BOFTModel,
BoneConfig,
BoneModel,
CPTConfig,
CPTEmbedding,
FourierFTConfig,
FourierFTModel,
HRAConfig,
HRAModel,
IA3Config,
IA3Model,
LNTuningConfig,
LNTuningModel,
LoHaConfig,
LoHaModel,
LoKrConfig,
LoKrModel,
LoraConfig,
LoraModel,
MultitaskPromptTuningConfig,
OFTConfig,
OFTModel,
PolyConfig,
PolyModel,
PrefixTuningConfig,
PromptEncoderConfig,
PromptTuningConfig,
VBLoRAConfig,
VBLoRAModel,
VeraConfig,
VeraModel,
XLoraConfig,
)
from .tuners.tuners_utils import BaseTuner
from .utils import _prepare_prompt_learning_config
if TYPE_CHECKING:
from transformers import PreTrainedModel
MODEL_TYPE_TO_PEFT_MODEL_MAPPING: dict[str, type[PeftModel]] = {
"SEQ_CLS": PeftModelForSequenceClassification,
"SEQ_2_SEQ_LM": PeftModelForSeq2SeqLM,
"CAUSAL_LM": PeftModelForCausalLM,
"TOKEN_CLS": PeftModelForTokenClassification,
"QUESTION_ANS": PeftModelForQuestionAnswering,
"FEATURE_EXTRACTION": PeftModelForFeatureExtraction,
}
PEFT_TYPE_TO_CONFIG_MAPPING: dict[str, type[PeftConfig]] = {
"ADAPTION_PROMPT": AdaptionPromptConfig,
"PROMPT_TUNING": PromptTuningConfig,
"PREFIX_TUNING": PrefixTuningConfig,
"P_TUNING": PromptEncoderConfig,
"LORA": LoraConfig,
"LOHA": LoHaConfig,
"LORAPLUS": LoraConfig,
"LOKR": LoKrConfig,
"ADALORA": AdaLoraConfig,
"BOFT": BOFTConfig,
"IA3": IA3Config,
"MULTITASK_PROMPT_TUNING": MultitaskPromptTuningConfig,
"OFT": OFTConfig,
"POLY": PolyConfig,
"LN_TUNING": LNTuningConfig,
"VERA": VeraConfig,
"FOURIERFT": FourierFTConfig,
"XLORA": XLoraConfig,
"HRA": HRAConfig,
"VBLORA": VBLoRAConfig,
"CPT": CPTConfig,
"BONE": BoneConfig,
}
PEFT_TYPE_TO_TUNER_MAPPING: dict[str, type[BaseTuner]] = {
"LORA": LoraModel,
"LOHA": LoHaModel,
"LOKR": LoKrModel,
"ADALORA": AdaLoraModel,
"BOFT": BOFTModel,
"IA3": IA3Model,
"OFT": OFTModel,
"POLY": PolyModel,
"LN_TUNING": LNTuningModel,
"VERA": VeraModel,
"FOURIERFT": FourierFTModel,
"XLORA": XLoraModel,
"HRA": HRAModel,
"VBLORA": VBLoRAModel,
"CPT": CPTEmbedding,
"BONE": BoneModel,
}
def get_peft_config(config_dict: dict[str, Any]) -> PeftConfig:
"""
Returns a Peft config object from a dictionary.
Args:
config_dict (`Dict[str, Any]`): Dictionary containing the configuration parameters.
"""
return PEFT_TYPE_TO_CONFIG_MAPPING[config_dict["peft_type"]](**config_dict)
def get_peft_model(
model: PreTrainedModel,
peft_config: PeftConfig,
adapter_name: str = "default",
mixed: bool = False,
autocast_adapter_dtype: bool = True,
revision: Optional[str] = None,
low_cpu_mem_usage: bool = False,
) -> PeftModel | PeftMixedModel:
"""
Returns a Peft model object from a model and a config.
Args:
model ([`transformers.PreTrainedModel`]):
Model to be wrapped.
peft_config ([`PeftConfig`]):
Configuration object containing the parameters of the Peft model.
adapter_name (`str`, `optional`, defaults to `"default"`):
The name of the adapter to be injected, if not provided, the default adapter name is used ("default").
mixed (`bool`, `optional`, defaults to `False`):
Whether to allow mixing different (compatible) adapter types.
autocast_adapter_dtype (`bool`, *optional*):
Whether to autocast the adapter dtype. Defaults to `True`. Right now, this will only cast adapter weights
using float16 or bfloat16 to float32, as this is typically required for stable training, and only affect
select PEFT tuners.
revision (`str`, `optional`, defaults to `main`):
The revision of the base model. If this isn't set, the saved peft model will load the `main` revision for
the base model
low_cpu_mem_usage (`bool`, `optional`, defaults to `False`):
Create empty adapter weights on meta device. Useful to speed up the loading process. Leave this setting as
False if you intend on training the model, unless the adapter weights will be replaced by different weights
before training starts.
"""
model_config = BaseTuner.get_model_config(model)
old_name = peft_config.base_model_name_or_path
new_name = model.__dict__.get("name_or_path", None)
peft_config.base_model_name_or_path = new_name
if (old_name is not None) and (old_name != new_name):
warnings.warn(
f"The PEFT config's `base_model_name_or_path` was renamed from '{old_name}' to '{new_name}'. "
"Please ensure that the correct base model is loaded when loading this checkpoint."
)
if revision is not None:
if peft_config.revision is not None and peft_config.revision != revision:
warnings.warn(
f"peft config has already set base model revision to {peft_config.revision}, overwriting with revision {revision}"
)
peft_config.revision = revision
if (
(isinstance(peft_config, PEFT_TYPE_TO_CONFIG_MAPPING["LORA"]))
and (peft_config.init_lora_weights == "eva")
and not low_cpu_mem_usage
):
warnings.warn(
"lora with eva initialization used with low_cpu_mem_usage=False. "
"Setting low_cpu_mem_usage=True can improve the maximum batch size possible for eva initialization."
)
if mixed:
# note: PeftMixedModel does not support autocast_adapter_dtype, so don't pass it
return PeftMixedModel(model, peft_config, adapter_name=adapter_name)
if peft_config.task_type not in MODEL_TYPE_TO_PEFT_MODEL_MAPPING.keys() and not peft_config.is_prompt_learning:
return PeftModel(
model,
peft_config,
adapter_name=adapter_name,
autocast_adapter_dtype=autocast_adapter_dtype,
low_cpu_mem_usage=low_cpu_mem_usage,
)
if peft_config.is_prompt_learning:
peft_config = _prepare_prompt_learning_config(peft_config, model_config)
return MODEL_TYPE_TO_PEFT_MODEL_MAPPING[peft_config.task_type](
model,
peft_config,
adapter_name=adapter_name,
autocast_adapter_dtype=autocast_adapter_dtype,
low_cpu_mem_usage=low_cpu_mem_usage,
)
def inject_adapter_in_model(
peft_config: PeftConfig, model: torch.nn.Module, adapter_name: str = "default", low_cpu_mem_usage: bool = False
) -> torch.nn.Module:
r"""
A simple API to create and inject adapter in-place into a model. Currently the API does not support prompt learning
methods and adaption prompt. Make sure to have the correct `target_names` set in the `peft_config` object. The API
calls `get_peft_model` under the hood but would be restricted only to non-prompt learning methods.
Args:
peft_config (`PeftConfig`):
Configuration object containing the parameters of the Peft model.
model (`torch.nn.Module`):
The input model where the adapter will be injected.
adapter_name (`str`, `optional`, defaults to `"default"`):
The name of the adapter to be injected, if not provided, the default adapter name is used ("default").
low_cpu_mem_usage (`bool`, `optional`, defaults to `False`):
Create empty adapter weights on meta device. Useful to speed up the loading process.
"""
if peft_config.is_prompt_learning or peft_config.is_adaption_prompt:
raise ValueError("`create_and_replace` does not support prompt learning and adaption prompt yet.")
if peft_config.peft_type not in PEFT_TYPE_TO_TUNER_MAPPING.keys():
raise ValueError(
f"`inject_adapter_in_model` does not support {peft_config.peft_type} yet. Please use `get_peft_model`."
)
tuner_cls = PEFT_TYPE_TO_TUNER_MAPPING[peft_config.peft_type]
# By instantiating a peft model we are injecting randomly initialized LoRA layers into the model's modules.
peft_model = tuner_cls(model, peft_config, adapter_name=adapter_name, low_cpu_mem_usage=low_cpu_mem_usage)
return peft_model.model
|