File size: 18,394 Bytes
3b609b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
# Copyright 2024 The Genmo team and The HuggingFace Team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from typing import Any, Dict, Optional, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F

from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
from ...utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
from ...utils.torch_utils import maybe_allow_in_graph
from ..attention import FeedForward
from ..attention_processor import Attention
from ..embeddings import PixArtAlphaTextProjection
from ..modeling_outputs import Transformer2DModelOutput
from ..modeling_utils import ModelMixin
from ..normalization import AdaLayerNormSingle, RMSNorm


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


class LTXVideoAttentionProcessor2_0:
    r"""
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is
    used in the LTX model. It applies a normalization layer and rotary embedding on the query and key vector.
    """

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "LTXVideoAttentionProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states

        query = attn.to_q(hidden_states)
        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        query = attn.norm_q(query)
        key = attn.norm_k(key)

        if image_rotary_emb is not None:
            query = apply_rotary_emb(query, image_rotary_emb)
            key = apply_rotary_emb(key, image_rotary_emb)

        query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2)
        key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2)
        value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2)

        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )
        hidden_states = hidden_states.transpose(1, 2).flatten(2, 3)
        hidden_states = hidden_states.to(query.dtype)

        hidden_states = attn.to_out[0](hidden_states)
        hidden_states = attn.to_out[1](hidden_states)
        return hidden_states


class LTXVideoRotaryPosEmbed(nn.Module):
    def __init__(
        self,
        dim: int,
        base_num_frames: int = 20,
        base_height: int = 2048,
        base_width: int = 2048,
        patch_size: int = 1,
        patch_size_t: int = 1,
        theta: float = 10000.0,
    ) -> None:
        super().__init__()

        self.dim = dim
        self.base_num_frames = base_num_frames
        self.base_height = base_height
        self.base_width = base_width
        self.patch_size = patch_size
        self.patch_size_t = patch_size_t
        self.theta = theta

    def forward(
        self,
        hidden_states: torch.Tensor,
        num_frames: int,
        height: int,
        width: int,
        rope_interpolation_scale: Optional[Tuple[torch.Tensor, float, float]] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        batch_size = hidden_states.size(0)

        # Always compute rope in fp32
        grid_h = torch.arange(height, dtype=torch.float32, device=hidden_states.device)
        grid_w = torch.arange(width, dtype=torch.float32, device=hidden_states.device)
        grid_f = torch.arange(num_frames, dtype=torch.float32, device=hidden_states.device)
        grid = torch.meshgrid(grid_f, grid_h, grid_w, indexing="ij")
        grid = torch.stack(grid, dim=0)
        grid = grid.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1)

        if rope_interpolation_scale is not None:
            grid[:, 0:1] = grid[:, 0:1] * rope_interpolation_scale[0] * self.patch_size_t / self.base_num_frames
            grid[:, 1:2] = grid[:, 1:2] * rope_interpolation_scale[1] * self.patch_size / self.base_height
            grid[:, 2:3] = grid[:, 2:3] * rope_interpolation_scale[2] * self.patch_size / self.base_width

        grid = grid.flatten(2, 4).transpose(1, 2)

        start = 1.0
        end = self.theta
        freqs = self.theta ** torch.linspace(
            math.log(start, self.theta),
            math.log(end, self.theta),
            self.dim // 6,
            device=hidden_states.device,
            dtype=torch.float32,
        )
        freqs = freqs * math.pi / 2.0
        freqs = freqs * (grid.unsqueeze(-1) * 2 - 1)
        freqs = freqs.transpose(-1, -2).flatten(2)

        cos_freqs = freqs.cos().repeat_interleave(2, dim=-1)
        sin_freqs = freqs.sin().repeat_interleave(2, dim=-1)

        if self.dim % 6 != 0:
            cos_padding = torch.ones_like(cos_freqs[:, :, : self.dim % 6])
            sin_padding = torch.zeros_like(cos_freqs[:, :, : self.dim % 6])
            cos_freqs = torch.cat([cos_padding, cos_freqs], dim=-1)
            sin_freqs = torch.cat([sin_padding, sin_freqs], dim=-1)

        return cos_freqs, sin_freqs


@maybe_allow_in_graph
class LTXVideoTransformerBlock(nn.Module):
    r"""
    Transformer block used in [LTX](https://huggingface.co/Lightricks/LTX-Video).

    Args:
        dim (`int`):
            The number of channels in the input and output.
        num_attention_heads (`int`):
            The number of heads to use for multi-head attention.
        attention_head_dim (`int`):
            The number of channels in each head.
        qk_norm (`str`, defaults to `"rms_norm"`):
            The normalization layer to use.
        activation_fn (`str`, defaults to `"gelu-approximate"`):
            Activation function to use in feed-forward.
        eps (`float`, defaults to `1e-6`):
            Epsilon value for normalization layers.
    """

    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        cross_attention_dim: int,
        qk_norm: str = "rms_norm_across_heads",
        activation_fn: str = "gelu-approximate",
        attention_bias: bool = True,
        attention_out_bias: bool = True,
        eps: float = 1e-6,
        elementwise_affine: bool = False,
    ):
        super().__init__()

        self.norm1 = RMSNorm(dim, eps=eps, elementwise_affine=elementwise_affine)
        self.attn1 = Attention(
            query_dim=dim,
            heads=num_attention_heads,
            kv_heads=num_attention_heads,
            dim_head=attention_head_dim,
            bias=attention_bias,
            cross_attention_dim=None,
            out_bias=attention_out_bias,
            qk_norm=qk_norm,
            processor=LTXVideoAttentionProcessor2_0(),
        )

        self.norm2 = RMSNorm(dim, eps=eps, elementwise_affine=elementwise_affine)
        self.attn2 = Attention(
            query_dim=dim,
            cross_attention_dim=cross_attention_dim,
            heads=num_attention_heads,
            kv_heads=num_attention_heads,
            dim_head=attention_head_dim,
            bias=attention_bias,
            out_bias=attention_out_bias,
            qk_norm=qk_norm,
            processor=LTXVideoAttentionProcessor2_0(),
        )

        self.ff = FeedForward(dim, activation_fn=activation_fn)

        self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        temb: torch.Tensor,
        image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        batch_size = hidden_states.size(0)
        norm_hidden_states = self.norm1(hidden_states)

        num_ada_params = self.scale_shift_table.shape[0]
        ada_values = self.scale_shift_table[None, None] + temb.reshape(batch_size, temb.size(1), num_ada_params, -1)
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ada_values.unbind(dim=2)
        norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa

        attn_hidden_states = self.attn1(
            hidden_states=norm_hidden_states,
            encoder_hidden_states=None,
            image_rotary_emb=image_rotary_emb,
        )
        hidden_states = hidden_states + attn_hidden_states * gate_msa

        attn_hidden_states = self.attn2(
            hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            image_rotary_emb=None,
            attention_mask=encoder_attention_mask,
        )
        hidden_states = hidden_states + attn_hidden_states
        norm_hidden_states = self.norm2(hidden_states) * (1 + scale_mlp) + shift_mlp

        ff_output = self.ff(norm_hidden_states)
        hidden_states = hidden_states + ff_output * gate_mlp

        return hidden_states


@maybe_allow_in_graph
class LTXVideoTransformer3DModel(ModelMixin, ConfigMixin, FromOriginalModelMixin, PeftAdapterMixin):
    r"""
    A Transformer model for video-like data used in [LTX](https://huggingface.co/Lightricks/LTX-Video).

    Args:
        in_channels (`int`, defaults to `128`):
            The number of channels in the input.
        out_channels (`int`, defaults to `128`):
            The number of channels in the output.
        patch_size (`int`, defaults to `1`):
            The size of the spatial patches to use in the patch embedding layer.
        patch_size_t (`int`, defaults to `1`):
            The size of the tmeporal patches to use in the patch embedding layer.
        num_attention_heads (`int`, defaults to `32`):
            The number of heads to use for multi-head attention.
        attention_head_dim (`int`, defaults to `64`):
            The number of channels in each head.
        cross_attention_dim (`int`, defaults to `2048 `):
            The number of channels for cross attention heads.
        num_layers (`int`, defaults to `28`):
            The number of layers of Transformer blocks to use.
        activation_fn (`str`, defaults to `"gelu-approximate"`):
            Activation function to use in feed-forward.
        qk_norm (`str`, defaults to `"rms_norm_across_heads"`):
            The normalization layer to use.
    """

    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
        in_channels: int = 128,
        out_channels: int = 128,
        patch_size: int = 1,
        patch_size_t: int = 1,
        num_attention_heads: int = 32,
        attention_head_dim: int = 64,
        cross_attention_dim: int = 2048,
        num_layers: int = 28,
        activation_fn: str = "gelu-approximate",
        qk_norm: str = "rms_norm_across_heads",
        norm_elementwise_affine: bool = False,
        norm_eps: float = 1e-6,
        caption_channels: int = 4096,
        attention_bias: bool = True,
        attention_out_bias: bool = True,
    ) -> None:
        super().__init__()

        out_channels = out_channels or in_channels
        inner_dim = num_attention_heads * attention_head_dim

        self.proj_in = nn.Linear(in_channels, inner_dim)

        self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)
        self.time_embed = AdaLayerNormSingle(inner_dim, use_additional_conditions=False)

        self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim)

        self.rope = LTXVideoRotaryPosEmbed(
            dim=inner_dim,
            base_num_frames=20,
            base_height=2048,
            base_width=2048,
            patch_size=patch_size,
            patch_size_t=patch_size_t,
            theta=10000.0,
        )

        self.transformer_blocks = nn.ModuleList(
            [
                LTXVideoTransformerBlock(
                    dim=inner_dim,
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=attention_head_dim,
                    cross_attention_dim=cross_attention_dim,
                    qk_norm=qk_norm,
                    activation_fn=activation_fn,
                    attention_bias=attention_bias,
                    attention_out_bias=attention_out_bias,
                    eps=norm_eps,
                    elementwise_affine=norm_elementwise_affine,
                )
                for _ in range(num_layers)
            ]
        )

        self.norm_out = nn.LayerNorm(inner_dim, eps=1e-6, elementwise_affine=False)
        self.proj_out = nn.Linear(inner_dim, out_channels)

        self.gradient_checkpointing = False

    def _set_gradient_checkpointing(self, module, value=False):
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = value

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        timestep: torch.LongTensor,
        encoder_attention_mask: torch.Tensor,
        num_frames: int,
        height: int,
        width: int,
        rope_interpolation_scale: Optional[Tuple[float, float, float]] = None,
        attention_kwargs: Optional[Dict[str, Any]] = None,
        return_dict: bool = True,
    ) -> torch.Tensor:
        if attention_kwargs is not None:
            attention_kwargs = attention_kwargs.copy()
            lora_scale = attention_kwargs.pop("scale", 1.0)
        else:
            lora_scale = 1.0

        if USE_PEFT_BACKEND:
            # weight the lora layers by setting `lora_scale` for each PEFT layer
            scale_lora_layers(self, lora_scale)
        else:
            if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
                logger.warning(
                    "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
                )

        image_rotary_emb = self.rope(hidden_states, num_frames, height, width, rope_interpolation_scale)

        # convert encoder_attention_mask to a bias the same way we do for attention_mask
        if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
            encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)

        batch_size = hidden_states.size(0)
        hidden_states = self.proj_in(hidden_states)

        temb, embedded_timestep = self.time_embed(
            timestep.flatten(),
            batch_size=batch_size,
            hidden_dtype=hidden_states.dtype,
        )

        temb = temb.view(batch_size, -1, temb.size(-1))
        embedded_timestep = embedded_timestep.view(batch_size, -1, embedded_timestep.size(-1))

        encoder_hidden_states = self.caption_projection(encoder_hidden_states)
        encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.size(-1))

        for block in self.transformer_blocks:
            if torch.is_grad_enabled() and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    encoder_hidden_states,
                    temb,
                    image_rotary_emb,
                    encoder_attention_mask,
                    **ckpt_kwargs,
                )
            else:
                hidden_states = block(
                    hidden_states=hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    temb=temb,
                    image_rotary_emb=image_rotary_emb,
                    encoder_attention_mask=encoder_attention_mask,
                )

        scale_shift_values = self.scale_shift_table[None, None] + embedded_timestep[:, :, None]
        shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1]

        hidden_states = self.norm_out(hidden_states)
        hidden_states = hidden_states * (1 + scale) + shift
        output = self.proj_out(hidden_states)

        if USE_PEFT_BACKEND:
            # remove `lora_scale` from each PEFT layer
            unscale_lora_layers(self, lora_scale)

        if not return_dict:
            return (output,)
        return Transformer2DModelOutput(sample=output)


def apply_rotary_emb(x, freqs):
    cos, sin = freqs
    x_real, x_imag = x.unflatten(2, (-1, 2)).unbind(-1)  # [B, S, H, D // 2]
    x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(2)
    out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
    return out