Spaces:
Running
on
Zero
Running
on
Zero
File size: 44,811 Bytes
3b609b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 |
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
from typing import Dict, List, Optional, Union
import torch
import torch.nn.functional as F
from huggingface_hub.utils import validate_hf_hub_args
from safetensors import safe_open
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_state_dict
from ..utils import (
USE_PEFT_BACKEND,
_get_model_file,
is_accelerate_available,
is_torch_version,
is_transformers_available,
logging,
)
from .unet_loader_utils import _maybe_expand_lora_scales
if is_transformers_available():
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection, SiglipImageProcessor, SiglipVisionModel
from ..models.attention_processor import (
AttnProcessor,
AttnProcessor2_0,
FluxAttnProcessor2_0,
FluxIPAdapterJointAttnProcessor2_0,
IPAdapterAttnProcessor,
IPAdapterAttnProcessor2_0,
IPAdapterXFormersAttnProcessor,
JointAttnProcessor2_0,
SD3IPAdapterJointAttnProcessor2_0,
)
logger = logging.get_logger(__name__)
class IPAdapterMixin:
"""Mixin for handling IP Adapters."""
@validate_hf_hub_args
def load_ip_adapter(
self,
pretrained_model_name_or_path_or_dict: Union[str, List[str], Dict[str, torch.Tensor]],
subfolder: Union[str, List[str]],
weight_name: Union[str, List[str]],
image_encoder_folder: Optional[str] = "image_encoder",
**kwargs,
):
"""
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `List[str]` or `os.PathLike` or `List[os.PathLike]` or `dict` or `List[dict]`):
Can be either:
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
the Hub.
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
with [`ModelMixin.save_pretrained`].
- A [torch state
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
subfolder (`str` or `List[str]`):
The subfolder location of a model file within a larger model repository on the Hub or locally. If a
list is passed, it should have the same length as `weight_name`.
weight_name (`str` or `List[str]`):
The name of the weight file to load. If a list is passed, it should have the same length as
`subfolder`.
image_encoder_folder (`str`, *optional*, defaults to `image_encoder`):
The subfolder location of the image encoder within a larger model repository on the Hub or locally.
Pass `None` to not load the image encoder. If the image encoder is located in a folder inside
`subfolder`, you only need to pass the name of the folder that contains image encoder weights, e.g.
`image_encoder_folder="image_encoder"`. If the image encoder is located in a folder other than
`subfolder`, you should pass the path to the folder that contains image encoder weights, for example,
`image_encoder_folder="different_subfolder/image_encoder"`.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
argument to `True` will raise an error.
"""
# handle the list inputs for multiple IP Adapters
if not isinstance(weight_name, list):
weight_name = [weight_name]
if not isinstance(pretrained_model_name_or_path_or_dict, list):
pretrained_model_name_or_path_or_dict = [pretrained_model_name_or_path_or_dict]
if len(pretrained_model_name_or_path_or_dict) == 1:
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict * len(weight_name)
if not isinstance(subfolder, list):
subfolder = [subfolder]
if len(subfolder) == 1:
subfolder = subfolder * len(weight_name)
if len(weight_name) != len(pretrained_model_name_or_path_or_dict):
raise ValueError("`weight_name` and `pretrained_model_name_or_path_or_dict` must have the same length.")
if len(weight_name) != len(subfolder):
raise ValueError("`weight_name` and `subfolder` must have the same length.")
# Load the main state dict first.
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", None)
token = kwargs.pop("token", None)
revision = kwargs.pop("revision", None)
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
if low_cpu_mem_usage and not is_accelerate_available():
low_cpu_mem_usage = False
logger.warning(
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
" install accelerate\n```\n."
)
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
raise NotImplementedError(
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
" `low_cpu_mem_usage=False`."
)
user_agent = {
"file_type": "attn_procs_weights",
"framework": "pytorch",
}
state_dicts = []
for pretrained_model_name_or_path_or_dict, weight_name, subfolder in zip(
pretrained_model_name_or_path_or_dict, weight_name, subfolder
):
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
model_file = _get_model_file(
pretrained_model_name_or_path_or_dict,
weights_name=weight_name,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
)
if weight_name.endswith(".safetensors"):
state_dict = {"image_proj": {}, "ip_adapter": {}}
with safe_open(model_file, framework="pt", device="cpu") as f:
for key in f.keys():
if key.startswith("image_proj."):
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
elif key.startswith("ip_adapter."):
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
else:
state_dict = load_state_dict(model_file)
else:
state_dict = pretrained_model_name_or_path_or_dict
keys = list(state_dict.keys())
if "image_proj" not in keys and "ip_adapter" not in keys:
raise ValueError("Required keys are (`image_proj` and `ip_adapter`) missing from the state dict.")
state_dicts.append(state_dict)
# load CLIP image encoder here if it has not been registered to the pipeline yet
if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is None:
if image_encoder_folder is not None:
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
logger.info(f"loading image_encoder from {pretrained_model_name_or_path_or_dict}")
if image_encoder_folder.count("/") == 0:
image_encoder_subfolder = Path(subfolder, image_encoder_folder).as_posix()
else:
image_encoder_subfolder = Path(image_encoder_folder).as_posix()
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
pretrained_model_name_or_path_or_dict,
subfolder=image_encoder_subfolder,
low_cpu_mem_usage=low_cpu_mem_usage,
cache_dir=cache_dir,
local_files_only=local_files_only,
).to(self.device, dtype=self.dtype)
self.register_modules(image_encoder=image_encoder)
else:
raise ValueError(
"`image_encoder` cannot be loaded because `pretrained_model_name_or_path_or_dict` is a state dict."
)
else:
logger.warning(
"image_encoder is not loaded since `image_encoder_folder=None` passed. You will not be able to use `ip_adapter_image` when calling the pipeline with IP-Adapter."
"Use `ip_adapter_image_embeds` to pass pre-generated image embedding instead."
)
# create feature extractor if it has not been registered to the pipeline yet
if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is None:
# FaceID IP adapters don't need the image encoder so it's not present, in this case we default to 224
default_clip_size = 224
clip_image_size = (
self.image_encoder.config.image_size if self.image_encoder is not None else default_clip_size
)
feature_extractor = CLIPImageProcessor(size=clip_image_size, crop_size=clip_image_size)
self.register_modules(feature_extractor=feature_extractor)
# load ip-adapter into unet
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
unet._load_ip_adapter_weights(state_dicts, low_cpu_mem_usage=low_cpu_mem_usage)
extra_loras = unet._load_ip_adapter_loras(state_dicts)
if extra_loras != {}:
if not USE_PEFT_BACKEND:
logger.warning("PEFT backend is required to load these weights.")
else:
# apply the IP Adapter Face ID LoRA weights
peft_config = getattr(unet, "peft_config", {})
for k, lora in extra_loras.items():
if f"faceid_{k}" not in peft_config:
self.load_lora_weights(lora, adapter_name=f"faceid_{k}")
self.set_adapters([f"faceid_{k}"], adapter_weights=[1.0])
def set_ip_adapter_scale(self, scale):
"""
Set IP-Adapter scales per-transformer block. Input `scale` could be a single config or a list of configs for
granular control over each IP-Adapter behavior. A config can be a float or a dictionary.
Example:
```py
# To use original IP-Adapter
scale = 1.0
pipeline.set_ip_adapter_scale(scale)
# To use style block only
scale = {
"up": {"block_0": [0.0, 1.0, 0.0]},
}
pipeline.set_ip_adapter_scale(scale)
# To use style+layout blocks
scale = {
"down": {"block_2": [0.0, 1.0]},
"up": {"block_0": [0.0, 1.0, 0.0]},
}
pipeline.set_ip_adapter_scale(scale)
# To use style and layout from 2 reference images
scales = [{"down": {"block_2": [0.0, 1.0]}}, {"up": {"block_0": [0.0, 1.0, 0.0]}}]
pipeline.set_ip_adapter_scale(scales)
```
"""
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
if not isinstance(scale, list):
scale = [scale]
scale_configs = _maybe_expand_lora_scales(unet, scale, default_scale=0.0)
for attn_name, attn_processor in unet.attn_processors.items():
if isinstance(
attn_processor, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0, IPAdapterXFormersAttnProcessor)
):
if len(scale_configs) != len(attn_processor.scale):
raise ValueError(
f"Cannot assign {len(scale_configs)} scale_configs to "
f"{len(attn_processor.scale)} IP-Adapter."
)
elif len(scale_configs) == 1:
scale_configs = scale_configs * len(attn_processor.scale)
for i, scale_config in enumerate(scale_configs):
if isinstance(scale_config, dict):
for k, s in scale_config.items():
if attn_name.startswith(k):
attn_processor.scale[i] = s
else:
attn_processor.scale[i] = scale_config
def unload_ip_adapter(self):
"""
Unloads the IP Adapter weights
Examples:
```python
>>> # Assuming `pipeline` is already loaded with the IP Adapter weights.
>>> pipeline.unload_ip_adapter()
>>> ...
```
"""
# remove CLIP image encoder
if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is not None:
self.image_encoder = None
self.register_to_config(image_encoder=[None, None])
# remove feature extractor only when safety_checker is None as safety_checker uses
# the feature_extractor later
if not hasattr(self, "safety_checker"):
if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is not None:
self.feature_extractor = None
self.register_to_config(feature_extractor=[None, None])
# remove hidden encoder
self.unet.encoder_hid_proj = None
self.unet.config.encoder_hid_dim_type = None
# Kolors: restore `encoder_hid_proj` with `text_encoder_hid_proj`
if hasattr(self.unet, "text_encoder_hid_proj") and self.unet.text_encoder_hid_proj is not None:
self.unet.encoder_hid_proj = self.unet.text_encoder_hid_proj
self.unet.text_encoder_hid_proj = None
self.unet.config.encoder_hid_dim_type = "text_proj"
# restore original Unet attention processors layers
attn_procs = {}
for name, value in self.unet.attn_processors.items():
attn_processor_class = (
AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnProcessor()
)
attn_procs[name] = (
attn_processor_class
if isinstance(
value, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0, IPAdapterXFormersAttnProcessor)
)
else value.__class__()
)
self.unet.set_attn_processor(attn_procs)
class FluxIPAdapterMixin:
"""Mixin for handling Flux IP Adapters."""
@validate_hf_hub_args
def load_ip_adapter(
self,
pretrained_model_name_or_path_or_dict: Union[str, List[str], Dict[str, torch.Tensor]],
weight_name: Union[str, List[str]],
subfolder: Optional[Union[str, List[str]]] = "",
image_encoder_pretrained_model_name_or_path: Optional[str] = "image_encoder",
image_encoder_subfolder: Optional[str] = "",
image_encoder_dtype: torch.dtype = torch.float16,
**kwargs,
):
"""
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `List[str]` or `os.PathLike` or `List[os.PathLike]` or `dict` or `List[dict]`):
Can be either:
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
the Hub.
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
with [`ModelMixin.save_pretrained`].
- A [torch state
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
subfolder (`str` or `List[str]`):
The subfolder location of a model file within a larger model repository on the Hub or locally. If a
list is passed, it should have the same length as `weight_name`.
weight_name (`str` or `List[str]`):
The name of the weight file to load. If a list is passed, it should have the same length as
`weight_name`.
image_encoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `./image_encoder`):
Can be either:
- A string, the *model id* (for example `openai/clip-vit-large-patch14`) of a pretrained model
hosted on the Hub.
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
with [`ModelMixin.save_pretrained`].
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
argument to `True` will raise an error.
"""
# handle the list inputs for multiple IP Adapters
if not isinstance(weight_name, list):
weight_name = [weight_name]
if not isinstance(pretrained_model_name_or_path_or_dict, list):
pretrained_model_name_or_path_or_dict = [pretrained_model_name_or_path_or_dict]
if len(pretrained_model_name_or_path_or_dict) == 1:
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict * len(weight_name)
if not isinstance(subfolder, list):
subfolder = [subfolder]
if len(subfolder) == 1:
subfolder = subfolder * len(weight_name)
if len(weight_name) != len(pretrained_model_name_or_path_or_dict):
raise ValueError("`weight_name` and `pretrained_model_name_or_path_or_dict` must have the same length.")
if len(weight_name) != len(subfolder):
raise ValueError("`weight_name` and `subfolder` must have the same length.")
# Load the main state dict first.
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", None)
token = kwargs.pop("token", None)
revision = kwargs.pop("revision", None)
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
if low_cpu_mem_usage and not is_accelerate_available():
low_cpu_mem_usage = False
logger.warning(
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
" install accelerate\n```\n."
)
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
raise NotImplementedError(
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
" `low_cpu_mem_usage=False`."
)
user_agent = {
"file_type": "attn_procs_weights",
"framework": "pytorch",
}
state_dicts = []
for pretrained_model_name_or_path_or_dict, weight_name, subfolder in zip(
pretrained_model_name_or_path_or_dict, weight_name, subfolder
):
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
model_file = _get_model_file(
pretrained_model_name_or_path_or_dict,
weights_name=weight_name,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
)
if weight_name.endswith(".safetensors"):
state_dict = {"image_proj": {}, "ip_adapter": {}}
with safe_open(model_file, framework="pt", device="cpu") as f:
image_proj_keys = ["ip_adapter_proj_model.", "image_proj."]
ip_adapter_keys = ["double_blocks.", "ip_adapter."]
for key in f.keys():
if any(key.startswith(prefix) for prefix in image_proj_keys):
diffusers_name = ".".join(key.split(".")[1:])
state_dict["image_proj"][diffusers_name] = f.get_tensor(key)
elif any(key.startswith(prefix) for prefix in ip_adapter_keys):
diffusers_name = (
".".join(key.split(".")[1:])
.replace("ip_adapter_double_stream_k_proj", "to_k_ip")
.replace("ip_adapter_double_stream_v_proj", "to_v_ip")
.replace("processor.", "")
)
state_dict["ip_adapter"][diffusers_name] = f.get_tensor(key)
else:
state_dict = load_state_dict(model_file)
else:
state_dict = pretrained_model_name_or_path_or_dict
keys = list(state_dict.keys())
if keys != ["image_proj", "ip_adapter"]:
raise ValueError("Required keys are (`image_proj` and `ip_adapter`) missing from the state dict.")
state_dicts.append(state_dict)
# load CLIP image encoder here if it has not been registered to the pipeline yet
if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is None:
if image_encoder_pretrained_model_name_or_path is not None:
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
logger.info(f"loading image_encoder from {image_encoder_pretrained_model_name_or_path}")
image_encoder = (
CLIPVisionModelWithProjection.from_pretrained(
image_encoder_pretrained_model_name_or_path,
subfolder=image_encoder_subfolder,
low_cpu_mem_usage=low_cpu_mem_usage,
cache_dir=cache_dir,
local_files_only=local_files_only,
)
.to(self.device, dtype=image_encoder_dtype)
.eval()
)
self.register_modules(image_encoder=image_encoder)
else:
raise ValueError(
"`image_encoder` cannot be loaded because `pretrained_model_name_or_path_or_dict` is a state dict."
)
else:
logger.warning(
"image_encoder is not loaded since `image_encoder_folder=None` passed. You will not be able to use `ip_adapter_image` when calling the pipeline with IP-Adapter."
"Use `ip_adapter_image_embeds` to pass pre-generated image embedding instead."
)
# create feature extractor if it has not been registered to the pipeline yet
if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is None:
# FaceID IP adapters don't need the image encoder so it's not present, in this case we default to 224
default_clip_size = 224
clip_image_size = (
self.image_encoder.config.image_size if self.image_encoder is not None else default_clip_size
)
feature_extractor = CLIPImageProcessor(size=clip_image_size, crop_size=clip_image_size)
self.register_modules(feature_extractor=feature_extractor)
# load ip-adapter into transformer
self.transformer._load_ip_adapter_weights(state_dicts, low_cpu_mem_usage=low_cpu_mem_usage)
def set_ip_adapter_scale(self, scale: Union[float, List[float], List[List[float]]]):
"""
Set IP-Adapter scales per-transformer block. Input `scale` could be a single config or a list of configs for
granular control over each IP-Adapter behavior. A config can be a float or a list.
`float` is converted to list and repeated for the number of blocks and the number of IP adapters. `List[float]`
length match the number of blocks, it is repeated for each IP adapter. `List[List[float]]` must match the
number of IP adapters and each must match the number of blocks.
Example:
```py
# To use original IP-Adapter
scale = 1.0
pipeline.set_ip_adapter_scale(scale)
def LinearStrengthModel(start, finish, size):
return [(start + (finish - start) * (i / (size - 1))) for i in range(size)]
ip_strengths = LinearStrengthModel(0.3, 0.92, 19)
pipeline.set_ip_adapter_scale(ip_strengths)
```
"""
transformer = self.transformer
if not isinstance(scale, list):
scale = [[scale] * transformer.config.num_layers]
elif isinstance(scale, list) and isinstance(scale[0], int) or isinstance(scale[0], float):
if len(scale) != transformer.config.num_layers:
raise ValueError(f"Expected list of {transformer.config.num_layers} scales, got {len(scale)}.")
scale = [scale]
scale_configs = scale
key_id = 0
for attn_name, attn_processor in transformer.attn_processors.items():
if isinstance(attn_processor, (FluxIPAdapterJointAttnProcessor2_0)):
if len(scale_configs) != len(attn_processor.scale):
raise ValueError(
f"Cannot assign {len(scale_configs)} scale_configs to "
f"{len(attn_processor.scale)} IP-Adapter."
)
elif len(scale_configs) == 1:
scale_configs = scale_configs * len(attn_processor.scale)
for i, scale_config in enumerate(scale_configs):
attn_processor.scale[i] = scale_config[key_id]
key_id += 1
def unload_ip_adapter(self):
"""
Unloads the IP Adapter weights
Examples:
```python
>>> # Assuming `pipeline` is already loaded with the IP Adapter weights.
>>> pipeline.unload_ip_adapter()
>>> ...
```
"""
# remove CLIP image encoder
if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is not None:
self.image_encoder = None
self.register_to_config(image_encoder=[None, None])
# remove feature extractor only when safety_checker is None as safety_checker uses
# the feature_extractor later
if not hasattr(self, "safety_checker"):
if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is not None:
self.feature_extractor = None
self.register_to_config(feature_extractor=[None, None])
# remove hidden encoder
self.transformer.encoder_hid_proj = None
self.transformer.config.encoder_hid_dim_type = None
# restore original Transformer attention processors layers
attn_procs = {}
for name, value in self.transformer.attn_processors.items():
attn_processor_class = FluxAttnProcessor2_0()
attn_procs[name] = (
attn_processor_class if isinstance(value, (FluxIPAdapterJointAttnProcessor2_0)) else value.__class__()
)
self.transformer.set_attn_processor(attn_procs)
class SD3IPAdapterMixin:
"""Mixin for handling StableDiffusion 3 IP Adapters."""
@property
def is_ip_adapter_active(self) -> bool:
"""Checks if IP-Adapter is loaded and scale > 0.
IP-Adapter scale controls the influence of the image prompt versus text prompt. When this value is set to 0,
the image context is irrelevant.
Returns:
`bool`: True when IP-Adapter is loaded and any layer has scale > 0.
"""
scales = [
attn_proc.scale
for attn_proc in self.transformer.attn_processors.values()
if isinstance(attn_proc, SD3IPAdapterJointAttnProcessor2_0)
]
return len(scales) > 0 and any(scale > 0 for scale in scales)
@validate_hf_hub_args
def load_ip_adapter(
self,
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
weight_name: str = "ip-adapter.safetensors",
subfolder: Optional[str] = None,
image_encoder_folder: Optional[str] = "image_encoder",
**kwargs,
) -> None:
"""
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
Can be either:
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
the Hub.
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
with [`ModelMixin.save_pretrained`].
- A [torch state
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
weight_name (`str`, defaults to "ip-adapter.safetensors"):
The name of the weight file to load. If a list is passed, it should have the same length as
`subfolder`.
subfolder (`str`, *optional*):
The subfolder location of a model file within a larger model repository on the Hub or locally. If a
list is passed, it should have the same length as `weight_name`.
image_encoder_folder (`str`, *optional*, defaults to `image_encoder`):
The subfolder location of the image encoder within a larger model repository on the Hub or locally.
Pass `None` to not load the image encoder. If the image encoder is located in a folder inside
`subfolder`, you only need to pass the name of the folder that contains image encoder weights, e.g.
`image_encoder_folder="image_encoder"`. If the image encoder is located in a folder other than
`subfolder`, you should pass the path to the folder that contains image encoder weights, for example,
`image_encoder_folder="different_subfolder/image_encoder"`.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
argument to `True` will raise an error.
"""
# Load the main state dict first
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", None)
token = kwargs.pop("token", None)
revision = kwargs.pop("revision", None)
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
if low_cpu_mem_usage and not is_accelerate_available():
low_cpu_mem_usage = False
logger.warning(
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
" install accelerate\n```\n."
)
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
raise NotImplementedError(
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
" `low_cpu_mem_usage=False`."
)
user_agent = {
"file_type": "attn_procs_weights",
"framework": "pytorch",
}
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
model_file = _get_model_file(
pretrained_model_name_or_path_or_dict,
weights_name=weight_name,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
)
if weight_name.endswith(".safetensors"):
state_dict = {"image_proj": {}, "ip_adapter": {}}
with safe_open(model_file, framework="pt", device="cpu") as f:
for key in f.keys():
if key.startswith("image_proj."):
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
elif key.startswith("ip_adapter."):
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
else:
state_dict = load_state_dict(model_file)
else:
state_dict = pretrained_model_name_or_path_or_dict
keys = list(state_dict.keys())
if "image_proj" not in keys and "ip_adapter" not in keys:
raise ValueError("Required keys are (`image_proj` and `ip_adapter`) missing from the state dict.")
# Load image_encoder and feature_extractor here if they haven't been registered to the pipeline yet
if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is None:
if image_encoder_folder is not None:
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
logger.info(f"loading image_encoder from {pretrained_model_name_or_path_or_dict}")
if image_encoder_folder.count("/") == 0:
image_encoder_subfolder = Path(subfolder, image_encoder_folder).as_posix()
else:
image_encoder_subfolder = Path(image_encoder_folder).as_posix()
# Commons args for loading image encoder and image processor
kwargs = {
"low_cpu_mem_usage": low_cpu_mem_usage,
"cache_dir": cache_dir,
"local_files_only": local_files_only,
}
self.register_modules(
feature_extractor=SiglipImageProcessor.from_pretrained(image_encoder_subfolder, **kwargs).to(
self.device, dtype=self.dtype
),
image_encoder=SiglipVisionModel.from_pretrained(image_encoder_subfolder, **kwargs).to(
self.device, dtype=self.dtype
),
)
else:
raise ValueError(
"`image_encoder` cannot be loaded because `pretrained_model_name_or_path_or_dict` is a state dict."
)
else:
logger.warning(
"image_encoder is not loaded since `image_encoder_folder=None` passed. You will not be able to use `ip_adapter_image` when calling the pipeline with IP-Adapter."
"Use `ip_adapter_image_embeds` to pass pre-generated image embedding instead."
)
# Load IP-Adapter into transformer
self.transformer._load_ip_adapter_weights(state_dict, low_cpu_mem_usage=low_cpu_mem_usage)
def set_ip_adapter_scale(self, scale: float) -> None:
"""
Set IP-Adapter scale, which controls image prompt conditioning. A value of 1.0 means the model is only
conditioned on the image prompt, and 0.0 only conditioned by the text prompt. Lowering this value encourages
the model to produce more diverse images, but they may not be as aligned with the image prompt.
Example:
```python
>>> # Assuming `pipeline` is already loaded with the IP Adapter weights.
>>> pipeline.set_ip_adapter_scale(0.6)
>>> ...
```
Args:
scale (float):
IP-Adapter scale to be set.
"""
for attn_processor in self.transformer.attn_processors.values():
if isinstance(attn_processor, SD3IPAdapterJointAttnProcessor2_0):
attn_processor.scale = scale
def unload_ip_adapter(self) -> None:
"""
Unloads the IP Adapter weights.
Example:
```python
>>> # Assuming `pipeline` is already loaded with the IP Adapter weights.
>>> pipeline.unload_ip_adapter()
>>> ...
```
"""
# Remove image encoder
if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is not None:
self.image_encoder = None
self.register_to_config(image_encoder=None)
# Remove feature extractor
if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is not None:
self.feature_extractor = None
self.register_to_config(feature_extractor=None)
# Remove image projection
self.transformer.image_proj = None
# Restore original attention processors layers
attn_procs = {
name: (
JointAttnProcessor2_0() if isinstance(value, SD3IPAdapterJointAttnProcessor2_0) else value.__class__()
)
for name, value in self.transformer.attn_processors.items()
}
self.transformer.set_attn_processor(attn_procs)
|