File size: 44,811 Bytes
3b609b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from pathlib import Path
from typing import Dict, List, Optional, Union

import torch
import torch.nn.functional as F
from huggingface_hub.utils import validate_hf_hub_args
from safetensors import safe_open

from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_state_dict
from ..utils import (
    USE_PEFT_BACKEND,
    _get_model_file,
    is_accelerate_available,
    is_torch_version,
    is_transformers_available,
    logging,
)
from .unet_loader_utils import _maybe_expand_lora_scales


if is_transformers_available():
    from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection, SiglipImageProcessor, SiglipVisionModel

from ..models.attention_processor import (
    AttnProcessor,
    AttnProcessor2_0,
    FluxAttnProcessor2_0,
    FluxIPAdapterJointAttnProcessor2_0,
    IPAdapterAttnProcessor,
    IPAdapterAttnProcessor2_0,
    IPAdapterXFormersAttnProcessor,
    JointAttnProcessor2_0,
    SD3IPAdapterJointAttnProcessor2_0,
)


logger = logging.get_logger(__name__)


class IPAdapterMixin:
    """Mixin for handling IP Adapters."""

    @validate_hf_hub_args
    def load_ip_adapter(
        self,
        pretrained_model_name_or_path_or_dict: Union[str, List[str], Dict[str, torch.Tensor]],
        subfolder: Union[str, List[str]],
        weight_name: Union[str, List[str]],
        image_encoder_folder: Optional[str] = "image_encoder",
        **kwargs,
    ):
        """
        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `List[str]` or `os.PathLike` or `List[os.PathLike]` or `dict` or `List[dict]`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
            subfolder (`str` or `List[str]`):
                The subfolder location of a model file within a larger model repository on the Hub or locally. If a
                list is passed, it should have the same length as `weight_name`.
            weight_name (`str` or `List[str]`):
                The name of the weight file to load. If a list is passed, it should have the same length as
                `subfolder`.
            image_encoder_folder (`str`, *optional*, defaults to `image_encoder`):
                The subfolder location of the image encoder within a larger model repository on the Hub or locally.
                Pass `None` to not load the image encoder. If the image encoder is located in a folder inside
                `subfolder`, you only need to pass the name of the folder that contains image encoder weights, e.g.
                `image_encoder_folder="image_encoder"`. If the image encoder is located in a folder other than
                `subfolder`, you should pass the path to the folder that contains image encoder weights, for example,
                `image_encoder_folder="different_subfolder/image_encoder"`.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.

            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
        """

        # handle the list inputs for multiple IP Adapters
        if not isinstance(weight_name, list):
            weight_name = [weight_name]

        if not isinstance(pretrained_model_name_or_path_or_dict, list):
            pretrained_model_name_or_path_or_dict = [pretrained_model_name_or_path_or_dict]
        if len(pretrained_model_name_or_path_or_dict) == 1:
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict * len(weight_name)

        if not isinstance(subfolder, list):
            subfolder = [subfolder]
        if len(subfolder) == 1:
            subfolder = subfolder * len(weight_name)

        if len(weight_name) != len(pretrained_model_name_or_path_or_dict):
            raise ValueError("`weight_name` and `pretrained_model_name_or_path_or_dict` must have the same length.")

        if len(weight_name) != len(subfolder):
            raise ValueError("`weight_name` and `subfolder` must have the same length.")

        # Load the main state dict first.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)

        if low_cpu_mem_usage and not is_accelerate_available():
            low_cpu_mem_usage = False
            logger.warning(
                "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                " install accelerate\n```\n."
            )

        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

        user_agent = {
            "file_type": "attn_procs_weights",
            "framework": "pytorch",
        }
        state_dicts = []
        for pretrained_model_name_or_path_or_dict, weight_name, subfolder in zip(
            pretrained_model_name_or_path_or_dict, weight_name, subfolder
        ):
            if not isinstance(pretrained_model_name_or_path_or_dict, dict):
                model_file = _get_model_file(
                    pretrained_model_name_or_path_or_dict,
                    weights_name=weight_name,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    token=token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
                )
                if weight_name.endswith(".safetensors"):
                    state_dict = {"image_proj": {}, "ip_adapter": {}}
                    with safe_open(model_file, framework="pt", device="cpu") as f:
                        for key in f.keys():
                            if key.startswith("image_proj."):
                                state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
                            elif key.startswith("ip_adapter."):
                                state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
                else:
                    state_dict = load_state_dict(model_file)
            else:
                state_dict = pretrained_model_name_or_path_or_dict

            keys = list(state_dict.keys())
            if "image_proj" not in keys and "ip_adapter" not in keys:
                raise ValueError("Required keys are (`image_proj` and `ip_adapter`) missing from the state dict.")

            state_dicts.append(state_dict)

            # load CLIP image encoder here if it has not been registered to the pipeline yet
            if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is None:
                if image_encoder_folder is not None:
                    if not isinstance(pretrained_model_name_or_path_or_dict, dict):
                        logger.info(f"loading image_encoder from {pretrained_model_name_or_path_or_dict}")
                        if image_encoder_folder.count("/") == 0:
                            image_encoder_subfolder = Path(subfolder, image_encoder_folder).as_posix()
                        else:
                            image_encoder_subfolder = Path(image_encoder_folder).as_posix()

                        image_encoder = CLIPVisionModelWithProjection.from_pretrained(
                            pretrained_model_name_or_path_or_dict,
                            subfolder=image_encoder_subfolder,
                            low_cpu_mem_usage=low_cpu_mem_usage,
                            cache_dir=cache_dir,
                            local_files_only=local_files_only,
                        ).to(self.device, dtype=self.dtype)
                        self.register_modules(image_encoder=image_encoder)
                    else:
                        raise ValueError(
                            "`image_encoder` cannot be loaded because `pretrained_model_name_or_path_or_dict` is a state dict."
                        )
                else:
                    logger.warning(
                        "image_encoder is not loaded since `image_encoder_folder=None` passed. You will not be able to use `ip_adapter_image` when calling the pipeline with IP-Adapter."
                        "Use `ip_adapter_image_embeds` to pass pre-generated image embedding instead."
                    )

            # create feature extractor if it has not been registered to the pipeline yet
            if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is None:
                # FaceID IP adapters don't need the image encoder so it's not present, in this case we default to 224
                default_clip_size = 224
                clip_image_size = (
                    self.image_encoder.config.image_size if self.image_encoder is not None else default_clip_size
                )
                feature_extractor = CLIPImageProcessor(size=clip_image_size, crop_size=clip_image_size)
                self.register_modules(feature_extractor=feature_extractor)

        # load ip-adapter into unet
        unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
        unet._load_ip_adapter_weights(state_dicts, low_cpu_mem_usage=low_cpu_mem_usage)

        extra_loras = unet._load_ip_adapter_loras(state_dicts)
        if extra_loras != {}:
            if not USE_PEFT_BACKEND:
                logger.warning("PEFT backend is required to load these weights.")
            else:
                # apply the IP Adapter Face ID LoRA weights
                peft_config = getattr(unet, "peft_config", {})
                for k, lora in extra_loras.items():
                    if f"faceid_{k}" not in peft_config:
                        self.load_lora_weights(lora, adapter_name=f"faceid_{k}")
                        self.set_adapters([f"faceid_{k}"], adapter_weights=[1.0])

    def set_ip_adapter_scale(self, scale):
        """
        Set IP-Adapter scales per-transformer block. Input `scale` could be a single config or a list of configs for
        granular control over each IP-Adapter behavior. A config can be a float or a dictionary.

        Example:

        ```py
        # To use original IP-Adapter
        scale = 1.0
        pipeline.set_ip_adapter_scale(scale)

        # To use style block only
        scale = {
            "up": {"block_0": [0.0, 1.0, 0.0]},
        }
        pipeline.set_ip_adapter_scale(scale)

        # To use style+layout blocks
        scale = {
            "down": {"block_2": [0.0, 1.0]},
            "up": {"block_0": [0.0, 1.0, 0.0]},
        }
        pipeline.set_ip_adapter_scale(scale)

        # To use style and layout from 2 reference images
        scales = [{"down": {"block_2": [0.0, 1.0]}}, {"up": {"block_0": [0.0, 1.0, 0.0]}}]
        pipeline.set_ip_adapter_scale(scales)
        ```
        """
        unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
        if not isinstance(scale, list):
            scale = [scale]
        scale_configs = _maybe_expand_lora_scales(unet, scale, default_scale=0.0)

        for attn_name, attn_processor in unet.attn_processors.items():
            if isinstance(
                attn_processor, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0, IPAdapterXFormersAttnProcessor)
            ):
                if len(scale_configs) != len(attn_processor.scale):
                    raise ValueError(
                        f"Cannot assign {len(scale_configs)} scale_configs to "
                        f"{len(attn_processor.scale)} IP-Adapter."
                    )
                elif len(scale_configs) == 1:
                    scale_configs = scale_configs * len(attn_processor.scale)
                for i, scale_config in enumerate(scale_configs):
                    if isinstance(scale_config, dict):
                        for k, s in scale_config.items():
                            if attn_name.startswith(k):
                                attn_processor.scale[i] = s
                    else:
                        attn_processor.scale[i] = scale_config

    def unload_ip_adapter(self):
        """
        Unloads the IP Adapter weights

        Examples:

        ```python
        >>> # Assuming `pipeline` is already loaded with the IP Adapter weights.
        >>> pipeline.unload_ip_adapter()
        >>> ...
        ```
        """
        # remove CLIP image encoder
        if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is not None:
            self.image_encoder = None
            self.register_to_config(image_encoder=[None, None])

        # remove feature extractor only when safety_checker is None as safety_checker uses
        # the feature_extractor later
        if not hasattr(self, "safety_checker"):
            if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is not None:
                self.feature_extractor = None
                self.register_to_config(feature_extractor=[None, None])

        # remove hidden encoder
        self.unet.encoder_hid_proj = None
        self.unet.config.encoder_hid_dim_type = None

        # Kolors: restore `encoder_hid_proj` with `text_encoder_hid_proj`
        if hasattr(self.unet, "text_encoder_hid_proj") and self.unet.text_encoder_hid_proj is not None:
            self.unet.encoder_hid_proj = self.unet.text_encoder_hid_proj
            self.unet.text_encoder_hid_proj = None
            self.unet.config.encoder_hid_dim_type = "text_proj"

        # restore original Unet attention processors layers
        attn_procs = {}
        for name, value in self.unet.attn_processors.items():
            attn_processor_class = (
                AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnProcessor()
            )
            attn_procs[name] = (
                attn_processor_class
                if isinstance(
                    value, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0, IPAdapterXFormersAttnProcessor)
                )
                else value.__class__()
            )
        self.unet.set_attn_processor(attn_procs)


class FluxIPAdapterMixin:
    """Mixin for handling Flux IP Adapters."""

    @validate_hf_hub_args
    def load_ip_adapter(
        self,
        pretrained_model_name_or_path_or_dict: Union[str, List[str], Dict[str, torch.Tensor]],
        weight_name: Union[str, List[str]],
        subfolder: Optional[Union[str, List[str]]] = "",
        image_encoder_pretrained_model_name_or_path: Optional[str] = "image_encoder",
        image_encoder_subfolder: Optional[str] = "",
        image_encoder_dtype: torch.dtype = torch.float16,
        **kwargs,
    ):
        """
        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `List[str]` or `os.PathLike` or `List[os.PathLike]` or `dict` or `List[dict]`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
            subfolder (`str` or `List[str]`):
                The subfolder location of a model file within a larger model repository on the Hub or locally. If a
                list is passed, it should have the same length as `weight_name`.
            weight_name (`str` or `List[str]`):
                The name of the weight file to load. If a list is passed, it should have the same length as
                `weight_name`.
            image_encoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `./image_encoder`):
                Can be either:

                    - A string, the *model id* (for example `openai/clip-vit-large-patch14`) of a pretrained model
                      hosted on the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.

            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
        """

        # handle the list inputs for multiple IP Adapters
        if not isinstance(weight_name, list):
            weight_name = [weight_name]

        if not isinstance(pretrained_model_name_or_path_or_dict, list):
            pretrained_model_name_or_path_or_dict = [pretrained_model_name_or_path_or_dict]
        if len(pretrained_model_name_or_path_or_dict) == 1:
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict * len(weight_name)

        if not isinstance(subfolder, list):
            subfolder = [subfolder]
        if len(subfolder) == 1:
            subfolder = subfolder * len(weight_name)

        if len(weight_name) != len(pretrained_model_name_or_path_or_dict):
            raise ValueError("`weight_name` and `pretrained_model_name_or_path_or_dict` must have the same length.")

        if len(weight_name) != len(subfolder):
            raise ValueError("`weight_name` and `subfolder` must have the same length.")

        # Load the main state dict first.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)

        if low_cpu_mem_usage and not is_accelerate_available():
            low_cpu_mem_usage = False
            logger.warning(
                "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                " install accelerate\n```\n."
            )

        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

        user_agent = {
            "file_type": "attn_procs_weights",
            "framework": "pytorch",
        }
        state_dicts = []
        for pretrained_model_name_or_path_or_dict, weight_name, subfolder in zip(
            pretrained_model_name_or_path_or_dict, weight_name, subfolder
        ):
            if not isinstance(pretrained_model_name_or_path_or_dict, dict):
                model_file = _get_model_file(
                    pretrained_model_name_or_path_or_dict,
                    weights_name=weight_name,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    token=token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
                )
                if weight_name.endswith(".safetensors"):
                    state_dict = {"image_proj": {}, "ip_adapter": {}}
                    with safe_open(model_file, framework="pt", device="cpu") as f:
                        image_proj_keys = ["ip_adapter_proj_model.", "image_proj."]
                        ip_adapter_keys = ["double_blocks.", "ip_adapter."]
                        for key in f.keys():
                            if any(key.startswith(prefix) for prefix in image_proj_keys):
                                diffusers_name = ".".join(key.split(".")[1:])
                                state_dict["image_proj"][diffusers_name] = f.get_tensor(key)
                            elif any(key.startswith(prefix) for prefix in ip_adapter_keys):
                                diffusers_name = (
                                    ".".join(key.split(".")[1:])
                                    .replace("ip_adapter_double_stream_k_proj", "to_k_ip")
                                    .replace("ip_adapter_double_stream_v_proj", "to_v_ip")
                                    .replace("processor.", "")
                                )
                                state_dict["ip_adapter"][diffusers_name] = f.get_tensor(key)
                else:
                    state_dict = load_state_dict(model_file)
            else:
                state_dict = pretrained_model_name_or_path_or_dict

            keys = list(state_dict.keys())
            if keys != ["image_proj", "ip_adapter"]:
                raise ValueError("Required keys are (`image_proj` and `ip_adapter`) missing from the state dict.")

            state_dicts.append(state_dict)

            # load CLIP image encoder here if it has not been registered to the pipeline yet
            if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is None:
                if image_encoder_pretrained_model_name_or_path is not None:
                    if not isinstance(pretrained_model_name_or_path_or_dict, dict):
                        logger.info(f"loading image_encoder from {image_encoder_pretrained_model_name_or_path}")
                        image_encoder = (
                            CLIPVisionModelWithProjection.from_pretrained(
                                image_encoder_pretrained_model_name_or_path,
                                subfolder=image_encoder_subfolder,
                                low_cpu_mem_usage=low_cpu_mem_usage,
                                cache_dir=cache_dir,
                                local_files_only=local_files_only,
                            )
                            .to(self.device, dtype=image_encoder_dtype)
                            .eval()
                        )
                        self.register_modules(image_encoder=image_encoder)
                    else:
                        raise ValueError(
                            "`image_encoder` cannot be loaded because `pretrained_model_name_or_path_or_dict` is a state dict."
                        )
                else:
                    logger.warning(
                        "image_encoder is not loaded since `image_encoder_folder=None` passed. You will not be able to use `ip_adapter_image` when calling the pipeline with IP-Adapter."
                        "Use `ip_adapter_image_embeds` to pass pre-generated image embedding instead."
                    )

            # create feature extractor if it has not been registered to the pipeline yet
            if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is None:
                # FaceID IP adapters don't need the image encoder so it's not present, in this case we default to 224
                default_clip_size = 224
                clip_image_size = (
                    self.image_encoder.config.image_size if self.image_encoder is not None else default_clip_size
                )
                feature_extractor = CLIPImageProcessor(size=clip_image_size, crop_size=clip_image_size)
                self.register_modules(feature_extractor=feature_extractor)

        # load ip-adapter into transformer
        self.transformer._load_ip_adapter_weights(state_dicts, low_cpu_mem_usage=low_cpu_mem_usage)

    def set_ip_adapter_scale(self, scale: Union[float, List[float], List[List[float]]]):
        """
        Set IP-Adapter scales per-transformer block. Input `scale` could be a single config or a list of configs for
        granular control over each IP-Adapter behavior. A config can be a float or a list.

        `float` is converted to list and repeated for the number of blocks and the number of IP adapters. `List[float]`
        length match the number of blocks, it is repeated for each IP adapter. `List[List[float]]` must match the
        number of IP adapters and each must match the number of blocks.

        Example:

        ```py
        # To use original IP-Adapter
        scale = 1.0
        pipeline.set_ip_adapter_scale(scale)


        def LinearStrengthModel(start, finish, size):
            return [(start + (finish - start) * (i / (size - 1))) for i in range(size)]


        ip_strengths = LinearStrengthModel(0.3, 0.92, 19)
        pipeline.set_ip_adapter_scale(ip_strengths)
        ```
        """
        transformer = self.transformer
        if not isinstance(scale, list):
            scale = [[scale] * transformer.config.num_layers]
        elif isinstance(scale, list) and isinstance(scale[0], int) or isinstance(scale[0], float):
            if len(scale) != transformer.config.num_layers:
                raise ValueError(f"Expected list of {transformer.config.num_layers} scales, got {len(scale)}.")
            scale = [scale]

        scale_configs = scale

        key_id = 0
        for attn_name, attn_processor in transformer.attn_processors.items():
            if isinstance(attn_processor, (FluxIPAdapterJointAttnProcessor2_0)):
                if len(scale_configs) != len(attn_processor.scale):
                    raise ValueError(
                        f"Cannot assign {len(scale_configs)} scale_configs to "
                        f"{len(attn_processor.scale)} IP-Adapter."
                    )
                elif len(scale_configs) == 1:
                    scale_configs = scale_configs * len(attn_processor.scale)
                for i, scale_config in enumerate(scale_configs):
                    attn_processor.scale[i] = scale_config[key_id]
                key_id += 1

    def unload_ip_adapter(self):
        """
        Unloads the IP Adapter weights

        Examples:

        ```python
        >>> # Assuming `pipeline` is already loaded with the IP Adapter weights.
        >>> pipeline.unload_ip_adapter()
        >>> ...
        ```
        """
        # remove CLIP image encoder
        if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is not None:
            self.image_encoder = None
            self.register_to_config(image_encoder=[None, None])

        # remove feature extractor only when safety_checker is None as safety_checker uses
        # the feature_extractor later
        if not hasattr(self, "safety_checker"):
            if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is not None:
                self.feature_extractor = None
                self.register_to_config(feature_extractor=[None, None])

        # remove hidden encoder
        self.transformer.encoder_hid_proj = None
        self.transformer.config.encoder_hid_dim_type = None

        # restore original Transformer attention processors layers
        attn_procs = {}
        for name, value in self.transformer.attn_processors.items():
            attn_processor_class = FluxAttnProcessor2_0()
            attn_procs[name] = (
                attn_processor_class if isinstance(value, (FluxIPAdapterJointAttnProcessor2_0)) else value.__class__()
            )
        self.transformer.set_attn_processor(attn_procs)


class SD3IPAdapterMixin:
    """Mixin for handling StableDiffusion 3 IP Adapters."""

    @property
    def is_ip_adapter_active(self) -> bool:
        """Checks if IP-Adapter is loaded and scale > 0.

        IP-Adapter scale controls the influence of the image prompt versus text prompt. When this value is set to 0,
        the image context is irrelevant.

        Returns:
            `bool`: True when IP-Adapter is loaded and any layer has scale > 0.
        """
        scales = [
            attn_proc.scale
            for attn_proc in self.transformer.attn_processors.values()
            if isinstance(attn_proc, SD3IPAdapterJointAttnProcessor2_0)
        ]

        return len(scales) > 0 and any(scale > 0 for scale in scales)

    @validate_hf_hub_args
    def load_ip_adapter(
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        weight_name: str = "ip-adapter.safetensors",
        subfolder: Optional[str] = None,
        image_encoder_folder: Optional[str] = "image_encoder",
        **kwargs,
    ) -> None:
        """
        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:
                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
            weight_name (`str`, defaults to "ip-adapter.safetensors"):
                The name of the weight file to load. If a list is passed, it should have the same length as
                `subfolder`.
            subfolder (`str`, *optional*):
                The subfolder location of a model file within a larger model repository on the Hub or locally. If a
                list is passed, it should have the same length as `weight_name`.
            image_encoder_folder (`str`, *optional*, defaults to `image_encoder`):
                The subfolder location of the image encoder within a larger model repository on the Hub or locally.
                Pass `None` to not load the image encoder. If the image encoder is located in a folder inside
                `subfolder`, you only need to pass the name of the folder that contains image encoder weights, e.g.
                `image_encoder_folder="image_encoder"`. If the image encoder is located in a folder other than
                `subfolder`, you should pass the path to the folder that contains image encoder weights, for example,
                `image_encoder_folder="different_subfolder/image_encoder"`.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
        """
        # Load the main state dict first
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)

        if low_cpu_mem_usage and not is_accelerate_available():
            low_cpu_mem_usage = False
            logger.warning(
                "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                " install accelerate\n```\n."
            )

        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

        user_agent = {
            "file_type": "attn_procs_weights",
            "framework": "pytorch",
        }

        if not isinstance(pretrained_model_name_or_path_or_dict, dict):
            model_file = _get_model_file(
                pretrained_model_name_or_path_or_dict,
                weights_name=weight_name,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                local_files_only=local_files_only,
                token=token,
                revision=revision,
                subfolder=subfolder,
                user_agent=user_agent,
            )
            if weight_name.endswith(".safetensors"):
                state_dict = {"image_proj": {}, "ip_adapter": {}}
                with safe_open(model_file, framework="pt", device="cpu") as f:
                    for key in f.keys():
                        if key.startswith("image_proj."):
                            state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
                        elif key.startswith("ip_adapter."):
                            state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
            else:
                state_dict = load_state_dict(model_file)
        else:
            state_dict = pretrained_model_name_or_path_or_dict

        keys = list(state_dict.keys())
        if "image_proj" not in keys and "ip_adapter" not in keys:
            raise ValueError("Required keys are (`image_proj` and `ip_adapter`) missing from the state dict.")

        # Load image_encoder and feature_extractor here if they haven't been registered to the pipeline yet
        if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is None:
            if image_encoder_folder is not None:
                if not isinstance(pretrained_model_name_or_path_or_dict, dict):
                    logger.info(f"loading image_encoder from {pretrained_model_name_or_path_or_dict}")
                    if image_encoder_folder.count("/") == 0:
                        image_encoder_subfolder = Path(subfolder, image_encoder_folder).as_posix()
                    else:
                        image_encoder_subfolder = Path(image_encoder_folder).as_posix()

                    # Commons args for loading image encoder and image processor
                    kwargs = {
                        "low_cpu_mem_usage": low_cpu_mem_usage,
                        "cache_dir": cache_dir,
                        "local_files_only": local_files_only,
                    }

                    self.register_modules(
                        feature_extractor=SiglipImageProcessor.from_pretrained(image_encoder_subfolder, **kwargs).to(
                            self.device, dtype=self.dtype
                        ),
                        image_encoder=SiglipVisionModel.from_pretrained(image_encoder_subfolder, **kwargs).to(
                            self.device, dtype=self.dtype
                        ),
                    )
                else:
                    raise ValueError(
                        "`image_encoder` cannot be loaded because `pretrained_model_name_or_path_or_dict` is a state dict."
                    )
            else:
                logger.warning(
                    "image_encoder is not loaded since `image_encoder_folder=None` passed. You will not be able to use `ip_adapter_image` when calling the pipeline with IP-Adapter."
                    "Use `ip_adapter_image_embeds` to pass pre-generated image embedding instead."
                )

        # Load IP-Adapter into transformer
        self.transformer._load_ip_adapter_weights(state_dict, low_cpu_mem_usage=low_cpu_mem_usage)

    def set_ip_adapter_scale(self, scale: float) -> None:
        """
        Set IP-Adapter scale, which controls image prompt conditioning. A value of 1.0 means the model is only
        conditioned on the image prompt, and 0.0 only conditioned by the text prompt. Lowering this value encourages
        the model to produce more diverse images, but they may not be as aligned with the image prompt.

        Example:

        ```python
        >>> # Assuming `pipeline` is already loaded with the IP Adapter weights.
        >>> pipeline.set_ip_adapter_scale(0.6)
        >>> ...
        ```

        Args:
            scale (float):
                IP-Adapter scale to be set.

        """
        for attn_processor in self.transformer.attn_processors.values():
            if isinstance(attn_processor, SD3IPAdapterJointAttnProcessor2_0):
                attn_processor.scale = scale

    def unload_ip_adapter(self) -> None:
        """
        Unloads the IP Adapter weights.

        Example:

        ```python
        >>> # Assuming `pipeline` is already loaded with the IP Adapter weights.
        >>> pipeline.unload_ip_adapter()
        >>> ...
        ```
        """
        # Remove image encoder
        if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is not None:
            self.image_encoder = None
            self.register_to_config(image_encoder=None)

        # Remove feature extractor
        if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is not None:
            self.feature_extractor = None
            self.register_to_config(feature_extractor=None)

        # Remove image projection
        self.transformer.image_proj = None

        # Restore original attention processors layers
        attn_procs = {
            name: (
                JointAttnProcessor2_0() if isinstance(value, SD3IPAdapterJointAttnProcessor2_0) else value.__class__()
            )
            for name, value in self.transformer.attn_processors.items()
        }
        self.transformer.set_attn_processor(attn_procs)