Spaces:
Running
on
T4
Running
on
T4
File size: 9,010 Bytes
5ebeb73 c60ebd1 5ebeb73 089249c c60ebd1 5ebeb73 089249c 5ebeb73 7263d32 5ebeb73 3b057c5 5ebeb73 089249c 5ebeb73 c60ebd1 089249c 5ebeb73 c60ebd1 5ebeb73 089249c 7263d32 089249c 7263d32 125e166 5ebeb73 125e166 7263d32 5ebeb73 089249c 5ebeb73 7263d32 5ebeb73 7263d32 5ebeb73 14d4a0b 7263d32 5ebeb73 7263d32 5ebeb73 7263d32 5ebeb73 7263d32 5ebeb73 14d4a0b 5ebeb73 14d4a0b 5ebeb73 7263d32 5ebeb73 c60ebd1 5ebeb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import os
import xml.etree.ElementTree as ET
from difflib import Differ
import cv2
import evaluate
import gradio as gr
import numpy as np
import pandas as pd
from src.htr_pipeline.inferencer import Inferencer, InferencerInterface
from src.htr_pipeline.pipeline import Pipeline, PipelineInterface
from src.htr_pipeline.utils.helper import gradio_info
class SingletonModelLoader:
_instance = None
def __new__(cls, *args, **kwargs):
if not cls._instance:
cls._instance = super(SingletonModelLoader, cls).__new__(cls, *args, **kwargs)
return cls._instance
def __init__(self):
if not hasattr(self, "inferencer"):
self.inferencer = Inferencer(local_run=True)
if not hasattr(self, "pipeline"):
self.pipeline = Pipeline(self.inferencer)
def handling_callback_stop_inferencer():
from src.htr_pipeline.utils import pipeline_inferencer
pipeline_inferencer.terminate = False
# fast track
class FastTrack:
def __init__(self, model_loader):
self.pipeline: PipelineInterface = model_loader.pipeline
def segment_to_xml(self, image, radio_button_choices, htr_tool_transcriber_model_dropdown):
handling_callback_stop_inferencer()
gr.Info("Excuting HTR on image")
xml_xml = "page_xml.xml"
xml_txt = "page_txt.txt"
if os.path.exists(f"./{xml_xml}"):
os.remove(f"./{xml_xml}")
htr_tool_transcriber_model_dropdown
rendered_xml = self.pipeline.running_htr_pipeline(image, htr_tool_transcriber_model_dropdown)
with open(xml_xml, "w") as f:
f.write(rendered_xml)
if os.path.exists(f"./{xml_txt}"):
os.remove(f"./{xml_txt}")
self.pipeline.parse_xml_to_txt()
returned_file_extension = self.file_extenstion_to_return(radio_button_choices, xml_xml, xml_txt)
return returned_file_extension, gr.update(visible=True)
def visualize_image_viewer(self, image):
xml_img, text_polygon_dict = self.pipeline.visualize_xml(image)
return xml_img, text_polygon_dict
def file_extenstion_to_return(self, radio_button_choices, xml_xml, xml_txt):
if len(radio_button_choices) < 2:
if radio_button_choices[0] == "Txt":
returned_file_extension = xml_txt
else:
returned_file_extension = xml_xml
else:
returned_file_extension = [xml_txt, xml_xml]
return returned_file_extension
def get_text_from_coords(self, text_polygon_dict, evt: gr.SelectData):
x, y = evt.index[0], evt.index[1]
for text, polygon_coords in text_polygon_dict.items():
if (
cv2.pointPolygonTest(np.array(polygon_coords), (x, y), False) >= 0
): # >= 0 means on the polygon or inside
return text
def segment_to_xml_api(self, image):
rendered_xml = self.pipeline.running_htr_pipeline(image)
return rendered_xml
# Custom track
class CustomTrack:
def __init__(self, model_loader):
self.inferencer: InferencerInterface = model_loader.inferencer
@gradio_info("Running Segment Region")
def region_segment(self, image, pred_score_threshold, containments_treshold):
predicted_regions, regions_cropped_ordered, _, _ = self.inferencer.predict_regions(
image, pred_score_threshold, containments_treshold
)
return predicted_regions, regions_cropped_ordered, gr.update(visible=False), gr.update(visible=True)
@gradio_info("Running Segment Line")
def line_segment(self, image, pred_score_threshold, containments_threshold):
predicted_lines, lines_cropped_ordered, _ = self.inferencer.predict_lines(
image, pred_score_threshold, containments_threshold
)
return (
predicted_lines,
image,
lines_cropped_ordered,
lines_cropped_ordered, #
lines_cropped_ordered, # temp_gallery
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=True),
)
def transcribe_text(self, images):
gr.Info("Running Transcribe Lines")
transcription_temp_list_with_score = []
mapping_dict = {}
total_images = len(images)
current_index = 0
bool_to_show_placeholder = gr.update(visible=True)
bool_to_show_control_results_transcribe = gr.update(visible=False)
for image in images:
current_index += 1
if current_index == total_images:
bool_to_show_control_results_transcribe = gr.update(visible=True)
bool_to_show_placeholder = gr.update(visible=False)
transcribed_text, prediction_score_from_htr = self.inferencer.transcribe(image)
transcription_temp_list_with_score.append((transcribed_text, prediction_score_from_htr))
df_trans_explore = pd.DataFrame(
transcription_temp_list_with_score, columns=["Transcribed text", "Pred score"]
)
joined_transcription_temp_list = "\n".join([tup[0] for tup in transcription_temp_list_with_score])
mapping_dict[transcribed_text] = image
yield joined_transcription_temp_list, df_trans_explore, mapping_dict, bool_to_show_control_results_transcribe, bool_to_show_placeholder
def get_select_index_image(self, images_from_gallery, evt: gr.SelectData):
return images_from_gallery[evt.index]["name"]
def get_select_index_df(self, transcribed_text_df_finish, mapping_dict, evt: gr.SelectData):
df_list = transcribed_text_df_finish["Transcribed text"].tolist()
key_text = df_list[evt.index[0]]
sorted_image = mapping_dict[key_text]
new_first = [sorted_image]
new_list = [img for txt, img in mapping_dict.items() if txt != key_text]
new_first.extend(new_list)
return new_first, key_text
def download_df_to_txt(self, transcribed_df):
text_in_list = transcribed_df["Transcribed text"].tolist()
file_name = "./transcribed_text.txt"
text_file = open(file_name, "w")
for text in text_in_list:
text_file.write(text + "\n")
text_file.close()
return file_name, gr.update(visible=True)
# Temporary structured here...
def upload_file(files):
return files.name, gr.update(visible=True)
def diff_texts(text1, text2):
d = Differ()
return [(token[2:], token[0] if token[0] != " " else None) for token in d.compare(text1, text2)]
def compute_cer_a_and_b_with_gt(run_a, run_b, run_gt):
text_run_a, text_run_b, text_run_gt = reading_xml_files_string(run_a, run_b, run_gt)
cer_metric = evaluate.load("cer")
if text_run_a == text_run_gt:
return "No Ground Truth was provided."
elif text_run_a == text_run_b:
return f"A & B -> GT: {round(cer_metric.compute(predictions=[text_run_a], references=[text_run_gt]), 4)}"
else:
return f"A -> GT: {round(cer_metric.compute(predictions=[text_run_a], references=[text_run_gt]), 4)}, B -> GT {round(cer_metric.compute(predictions=[text_run_b], references=[text_run_gt]), 4)}"
def temporary_xml_parser(page_xml):
tree = ET.parse(page_xml, parser=ET.XMLParser(encoding="utf-8"))
root = tree.getroot()
namespace = "{http://schema.primaresearch.org/PAGE/gts/pagecontent/2013-07-15}"
text_list = []
for textregion in root.findall(f".//{namespace}TextRegion"):
for textline in textregion.findall(f".//{namespace}TextLine"):
text = textline.find(f"{namespace}TextEquiv").find(f"{namespace}Unicode").text
text_list.append(text)
return " ".join(text_list)
def compare_diff_runs_highlight(run_a, run_b, run_gt):
text_run_a, text_run_b, text_run_gt = reading_xml_files_string(run_a, run_b, run_gt)
diff_runs = diff_texts(text_run_a, text_run_b)
diff_gt = diff_texts(text_run_a, text_run_gt)
return diff_runs, diff_gt
def reading_xml_files_string(run_a, run_b, run_gt):
if run_a is None:
return
if run_gt is None:
gr.Warning("No GT was provided, setting GT to A")
run_gt = run_a
if run_b is None:
gr.Warning("No B was provided, setting B to A")
run_b = run_a
text_run_a = temporary_xml_parser(run_a.name)
text_run_b = temporary_xml_parser(run_b.name)
text_run_gt = temporary_xml_parser(run_gt.name)
return text_run_a, text_run_b, text_run_gt
def update_selected_tab_output_and_setting():
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
def update_selected_tab_image_viewer():
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
def update_selected_tab_model_compare():
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
if __name__ == "__main__":
pass
|