File size: 16,644 Bytes
34b98f1
 
b76cf08
34b98f1
14d4a0b
3b057c5
 
 
60ad418
3b057c5
 
 
 
 
 
 
 
14d4a0b
 
 
3b057c5
 
b76cf08
14d4a0b
b76cf08
3b057c5
 
 
b76cf08
3b057c5
b76cf08
3b057c5
 
b76cf08
7263d32
b76cf08
 
14d4a0b
 
 
 
 
 
b76cf08
14d4a0b
 
 
 
 
 
 
 
 
 
 
 
b76cf08
 
 
 
14d4a0b
 
b76cf08
 
3b057c5
b76cf08
 
 
 
 
 
60ad418
 
b76cf08
 
 
 
 
 
 
 
 
 
 
 
3b057c5
 
b76cf08
3b057c5
 
 
 
 
7263d32
 
3b057c5
 
 
b76cf08
 
 
 
 
 
 
 
 
 
 
 
3b057c5
b76cf08
 
 
7263d32
b76cf08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b057c5
451f882
 
 
 
 
 
3b057c5
 
b76cf08
3b057c5
 
7263d32
 
3b057c5
 
 
7263d32
 
3b057c5
 
b76cf08
3b057c5
 
 
 
 
7263d32
 
3b057c5
 
 
 
 
b76cf08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b057c5
6a5ac94
3b057c5
b76cf08
3b057c5
 
 
14d4a0b
 
b76cf08
 
14d4a0b
b76cf08
451f882
7263d32
3b057c5
 
b76cf08
3b057c5
 
 
 
 
7263d32
 
3b057c5
7263d32
3b057c5
b76cf08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b057c5
7263d32
14d4a0b
6a5ac94
451f882
b76cf08
14d4a0b
3b057c5
 
 
6a5ac94
7263d32
3b057c5
 
 
 
7263d32
 
3b057c5
 
b76cf08
 
 
 
 
 
 
451f882
b76cf08
 
 
 
 
 
 
3b057c5
 
 
 
 
 
 
 
 
 
 
 
 
7263d32
3b057c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
451f882
 
3b057c5
 
14d4a0b
3b057c5
14d4a0b
3b057c5
 
7263d32
3b057c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14d4a0b
3b057c5
 
 
 
 
 
 
 
 
 
60ad418
3663121
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import os
import shutil
from difflib import Differ

import evaluate
import gradio as gr

from helper.examples.examples import DemoImages
from helper.utils import TrafficDataHandler
from src.htr_pipeline.gradio_backend import CustomTrack, SingletonModelLoader

model_loader = SingletonModelLoader()

custom_track = CustomTrack(model_loader)

images_for_demo = DemoImages()

cer_metric = evaluate.load("cer")


with gr.Blocks() as stepwise_htr_tool_tab:
    with gr.Tabs():
        with gr.Tab("1. Region segmentation"):
            with gr.Row():
                with gr.Column(scale=1):
                    vis_data_folder_placeholder = gr.Markdown(visible=False)
                    name_files_placeholder = gr.Markdown(visible=False)

                    with gr.Group():
                        input_region_image = gr.Image(
                            label="Image to region segment",
                            # type="numpy",
                            tool="editor",
                            height=500,
                        )
                        with gr.Accordion("Settings", open=False):
                            with gr.Group():
                                reg_pred_score_threshold_slider = gr.Slider(
                                    minimum=0.4,
                                    maximum=1,
                                    value=0.5,
                                    step=0.05,
                                    label="P-threshold",
                                    info="""Filter the confidence score for a prediction score to be considered""",
                                )
                                reg_containments_threshold_slider = gr.Slider(
                                    minimum=0,
                                    maximum=1,
                                    value=0.5,
                                    step=0.05,
                                    label="C-threshold",
                                    info="""The minimum required overlap or similarity 
                                                    for a detected region or object to be considered valid""",
                                )

                                region_segment_model_dropdown = gr.Dropdown(
                                    choices=["Riksarkivet/rtm_region"],
                                    value="Riksarkivet/rtm_region",
                                    label="Region segmentation model",
                                    info="More models will be added",
                                )

                    with gr.Row():
                        clear_button = gr.Button("Clear", variant="secondary", elem_id="clear_button")

                        region_segment_button = gr.Button(
                            "Run",
                            variant="primary",
                            elem_id="region_segment_button",
                        )

                        region_segment_button_var = gr.State(value="region_segment_button")

                with gr.Column(scale=2):
                    with gr.Box():
                        with gr.Row():
                            with gr.Column(scale=2):
                                gr.Examples(
                                    examples=images_for_demo.examples_list,
                                    inputs=[name_files_placeholder, input_region_image],
                                    label="Example images",
                                    examples_per_page=5,
                                )
                            with gr.Column(scale=3):
                                output_region_image = gr.Image(label="Segmented regions", type="numpy", height=600)

        ##############################################
        with gr.Tab("2. Line segmentation"):
            image_placeholder_lines = gr.Image(
                label="Segmented lines",
                # type="numpy",
                interactive="False",
                visible=True,
                height=600,
            )

            with gr.Row(visible=False) as control_line_segment:
                with gr.Column(scale=2):
                    with gr.Group():
                        with gr.Box():
                            regions_cropped_gallery = gr.Gallery(
                                label="Segmented regions",
                                elem_id="gallery",
                                columns=[2],
                                rows=[2],
                                # object_fit="contain",
                                height=450,
                                preview=True,
                                container=False,
                            )

                        input_region_from_gallery = gr.Image(
                            label="Region segmentation to line segment", interactive="False", visible=False, height=400
                        )

                        with gr.Row():
                            with gr.Accordion("Settings", open=False):
                                with gr.Row():
                                    line_pred_score_threshold_slider = gr.Slider(
                                        minimum=0.3,
                                        maximum=1,
                                        value=0.4,
                                        step=0.05,
                                        label="Pred_score threshold",
                                        info="""Filter the confidence score for a prediction score to be considered""",
                                    )
                                    line_containments_threshold_slider = gr.Slider(
                                        minimum=0,
                                        maximum=1,
                                        value=0.5,
                                        step=0.05,
                                        label="Containments threshold",
                                        info="""The minimum required overlap or similarity 
                                                        for a detected region or object to be considered valid""",
                                    )
                                with gr.Row(equal_height=False):
                                    line_segment_model_dropdown = gr.Dropdown(
                                        choices=["Riksarkivet/rtmdet_lines"],
                                        value="Riksarkivet/rtmdet_lines",
                                        label="Line segment model",
                                        info="More models will be added",
                                    )
                    with gr.Row():
                        # placeholder_line_button = gr.Button(
                        #     "",
                        #     variant="secondary",
                        #     scale=1,
                        # )
                        gr.Markdown(" ")

                        line_segment_button = gr.Button(
                            "Run",
                            variant="primary",
                            # elem_id="center_button",
                            scale=1,
                        )

                with gr.Column(scale=3):
                    output_line_from_region = gr.Image(
                        label="Segmented lines", type="numpy", interactive="False", height=600
                    )

        ###############################################
        with gr.Tab("3. Text recognition"):
            image_placeholder_htr = gr.Image(
                label="Transcribed lines",
                # type="numpy",
                interactive="False",
                visible=True,
                height=600,
            )

            with gr.Row(visible=False) as control_htr:
                inputs_lines_to_transcribe = gr.Variable()

                with gr.Column(scale=2):
                    with gr.Group():
                        image_inputs_lines_to_transcribe = gr.Image(
                            label="Transcribed lines", type="numpy", interactive="False", visible=False, height=470
                        )
                        with gr.Row():
                            with gr.Accordion("Settings", open=False):
                                transcriber_model = gr.Dropdown(
                                    choices=["Riksarkivet/satrn_htr", "microsoft/trocr-base-handwritten"],
                                    value="Riksarkivet/satrn_htr",
                                    label="Text recognition model",
                                    info="More models will be added",
                                )

                                gr.Slider(
                                    value=0.6,
                                    minimum=0.5,
                                    maximum=1,
                                    label="HTR threshold",
                                    info="Prediction score threshold for transcribed lines",
                                    scale=1,
                                )

                    with gr.Row():
                        copy_textarea = gr.Button("Copy text", variant="secondary", visible=True, scale=1)

                        transcribe_button = gr.Button("Run", variant="primary", visible=True, scale=1)

                with gr.Column(scale=3):
                    with gr.Row():
                        transcribed_text = gr.Textbox(
                            label="Transcribed text",
                            info="Transcribed text is being streamed back from the Text recognition model",
                            lines=26,
                            value="",
                            show_copy_button=True,
                            elem_id="textarea_stepwise_3",
                        )

        #####################################
        with gr.Tab("4. Explore results"):
            image_placeholder_explore_results = gr.Image(
                label="Cropped transcribed lines",
                # type="numpy",
                interactive="False",
                visible=True,
                height=600,
            )

            with gr.Row(visible=False, equal_height=False) as control_results_transcribe:
                with gr.Column(scale=1, visible=True):
                    with gr.Group():
                        with gr.Box():
                            temp_gallery_input = gr.Variable()

                            gallery_inputs_lines_to_transcribe = gr.Gallery(
                                label="Cropped transcribed lines",
                                elem_id="gallery_lines",
                                columns=[3],
                                rows=[3],
                                # object_fit="contain",
                                height=150,
                                preview=True,
                                container=False,
                            )
                        with gr.Row():
                            dataframe_text_index = gr.Textbox(
                                label="Text from DataFrame selection",
                                placeholder="Select row from the DataFrame.",
                                interactive=False,
                            )
                        with gr.Row():
                            gt_text_index = gr.Textbox(
                                label="Ground Truth",
                                placeholder="Provide the ground truth, if available.",
                                interactive=True,
                            )
                    with gr.Row():
                        diff_token_output = gr.HighlightedText(
                            label="Text diff",
                            combine_adjacent=True,
                            show_legend=True,
                            color_map={"+": "red", "-": "green"},
                        )

                    with gr.Row(equal_height=False):
                        cer_output = gr.Textbox(label="Character Error Rate")
                        gr.Markdown("")
                        calc_cer_button = gr.Button("Calculate CER", variant="primary", visible=True)

                with gr.Column(scale=1, visible=True):
                    mapping_dict = gr.Variable()
                    transcribed_text_df_finish = gr.Dataframe(
                        headers=["Transcribed text", "Prediction score"],
                        max_rows=14,
                        col_count=(2, "fixed"),
                        wrap=True,
                        interactive=False,
                        overflow_row_behaviour="paginate",
                        height=600,
                    )

    # custom track

    def diff_texts(text1, text2):
        d = Differ()
        return [(token[2:], token[0] if token[0] != " " else None) for token in d.compare(text1, text2)]

    def compute_cer(dataframe_text_index, gt_text_index):
        if gt_text_index is not None and gt_text_index.strip() != "":
            return round(cer_metric.compute(predictions=[dataframe_text_index], references=[gt_text_index]), 4)
        else:
            return "Ground truth not provided"

    calc_cer_button.click(compute_cer, inputs=[dataframe_text_index, gt_text_index], outputs=cer_output)

    calc_cer_button.click(diff_texts, inputs=[dataframe_text_index, gt_text_index], outputs=[diff_token_output])

    region_segment_button.click(
        custom_track.region_segment,
        inputs=[input_region_image, reg_pred_score_threshold_slider, reg_containments_threshold_slider],
        outputs=[output_region_image, regions_cropped_gallery, image_placeholder_lines, control_line_segment],
    )

    regions_cropped_gallery.select(
        custom_track.get_select_index_image, regions_cropped_gallery, input_region_from_gallery
    )

    transcribed_text_df_finish.select(
        fn=custom_track.get_select_index_df,
        inputs=[transcribed_text_df_finish, mapping_dict],
        outputs=[gallery_inputs_lines_to_transcribe, dataframe_text_index],
    )

    line_segment_button.click(
        custom_track.line_segment,
        inputs=[input_region_from_gallery, line_pred_score_threshold_slider, line_containments_threshold_slider],
        outputs=[
            output_line_from_region,
            image_inputs_lines_to_transcribe,
            inputs_lines_to_transcribe,
            gallery_inputs_lines_to_transcribe,
            temp_gallery_input,
            # Hide
            transcribe_button,
            image_inputs_lines_to_transcribe,
            image_placeholder_htr,
            control_htr,
        ],
    )

    copy_textarea.click(fn=None, _js="""document.querySelector("#textarea_stepwise_3 > label > button").click()""")

    transcribe_button.click(
        custom_track.transcribe_text,
        inputs=[inputs_lines_to_transcribe],
        outputs=[
            transcribed_text,
            transcribed_text_df_finish,
            mapping_dict,
            # Hide
            control_results_transcribe,
            image_placeholder_explore_results,
        ],
    )

    clear_button.click(
        lambda: (
            (shutil.rmtree("./vis_data") if os.path.exists("./vis_data") else None, None)[1],
            None,
            None,
            None,
            gr.update(visible=False),
            None,
            None,
            None,
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=True),
            None,
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=True),
            gr.update(visible=True),
        ),
        inputs=[],
        outputs=[
            vis_data_folder_placeholder,
            input_region_image,
            regions_cropped_gallery,
            input_region_from_gallery,
            control_line_segment,
            output_line_from_region,
            inputs_lines_to_transcribe,
            transcribed_text,
            control_htr,
            inputs_lines_to_transcribe,
            image_placeholder_htr,
            output_region_image,
            image_inputs_lines_to_transcribe,
            control_results_transcribe,
            image_placeholder_explore_results,
            image_placeholder_lines,
        ],
    )

    SECRET_KEY = os.environ.get("AM_I_IN_A_DOCKER_CONTAINER", False)
    if SECRET_KEY:
        region_segment_button.click(fn=TrafficDataHandler.store_metric_data, inputs=region_segment_button_var)