File size: 6,604 Bytes
5ebeb73
 
 
 
 
c60ebd1
 
5ebeb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76f8319
5ebeb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9a1c2d
 
 
 
5ebeb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bb1cba
5ebeb73
c60ebd1
 
52b2b0b
c60ebd1
 
 
 
 
 
 
 
 
 
 
5ebeb73
c60ebd1
5ebeb73
c60ebd1
5ebeb73
c60ebd1
5ebeb73
c60ebd1
5ebeb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
from typing import Protocol, Tuple

import gradio as gr
import mmcv
import numpy as np
import torch
from transformers import AutoImageProcessor, TrOCRProcessor, VisionEncoderDecoderModel

from src.htr_pipeline.models import HtrModels
from src.htr_pipeline.utils.filter_segmask import FilterSegMask
from src.htr_pipeline.utils.helper import timer_func
from src.htr_pipeline.utils.order_of_object import OrderObject
from src.htr_pipeline.utils.preprocess_img import Preprocess
from src.htr_pipeline.utils.process_segmask import SegMaskHelper


class Inferencer:
    def __init__(self, local_run=False):
        htr_models = HtrModels(local_run)
        self.seg_model = htr_models.load_region_model()
        self.line_model = htr_models.load_line_model()
        self.htr_model_inferencer = htr_models.load_htr_model()

        self.process_seg_mask = SegMaskHelper()
        self.postprocess_seg_mask = FilterSegMask()
        self.ordering = OrderObject()
        self.preprocess_img = Preprocess()

    @timer_func
    def predict_regions(self, input_image, pred_score_threshold=0.5, containments_threshold=0.5, visualize=True):
        input_image = self.preprocess_img.binarize_img(input_image)

        image = mmcv.imread(input_image)

        result = self.seg_model(image, return_datasample=True)
        result_pred = result["predictions"][0]

        filtered_result_pred = self.postprocess_seg_mask.filter_on_pred_threshold(
            result_pred, pred_score_threshold=pred_score_threshold
        )

        if len(filtered_result_pred.pred_instances.masks) == 0:
            raise gr.Error("No Regions were predicted by the model")

        else:
            result_align = self.process_seg_mask.align_masks_with_image(filtered_result_pred, image)
            result_clean = self.postprocess_seg_mask.remove_overlapping_masks(
                predicted_mask=result_align, containments_threshold=containments_threshold
            )

            if visualize:
                result_viz = self.seg_model.visualize(
                    inputs=[image], preds=[result_clean], return_vis=True, no_save_vis=True
                )[0]
            else:
                result_viz = None

            regions_cropped, polygons = self.process_seg_mask.crop_masks(result_clean, image)
            order = self.ordering.order_regions_marginalia(result_clean)

            regions_cropped_ordered = [regions_cropped[i] for i in order]
            polygons_ordered = [polygons[i] for i in order]
            masks_ordered = [result_clean.pred_instances.masks[i] for i in order]

            return result_viz, regions_cropped_ordered, polygons_ordered, masks_ordered

    @timer_func
    def predict_lines(
        self,
        image,
        pred_score_threshold=0.5,
        containments_threshold=0.5,
        line_spacing_factor=0.5,
        visualize=True,
        custom_track=True,
    ):
        result_tl = self.line_model(image, return_datasample=True)
        result_tl_pred = result_tl["predictions"][0]

        filtered_result_tl_pred = self.postprocess_seg_mask.filter_on_pred_threshold(
            result_tl_pred, pred_score_threshold=pred_score_threshold
        )

        if len(filtered_result_tl_pred.pred_instances.masks) == 0 and custom_track:
            raise gr.Error("No Lines were predicted by the model")

        elif len(filtered_result_tl_pred.pred_instances.masks) == 0 and not custom_track:
            return None, None, None

        else:
            result_tl_align = self.process_seg_mask.align_masks_with_image(filtered_result_tl_pred, image)
            result_tl_clean = self.postprocess_seg_mask.remove_overlapping_masks(
                predicted_mask=result_tl_align, containments_threshold=containments_threshold
            )

            if visualize:
                result_viz = self.seg_model.visualize(
                    inputs=[image],
                    preds=[result_tl_clean],
                    return_vis=True,
                    no_save_vis=True,
                )[0]
            else:
                result_viz = None

            lines_cropped, lines_polygons = self.process_seg_mask.crop_masks(result_tl_clean, image)
            ordered_indices = self.ordering.order_lines(
                line_image=result_tl_clean, line_spacing_factor=line_spacing_factor
            )

            lines_cropped_ordered = [lines_cropped[i] for i in ordered_indices]
            lines_polygons_ordered = [lines_polygons[i] for i in ordered_indices]

            return result_viz, lines_cropped_ordered, lines_polygons_ordered

    @timer_func
    def transcribe(self, line_cropped):
        result_rec = self.htr_model_inferencer(line_cropped)
        return result_rec["predictions"][0]["text"], round(result_rec["predictions"][0]["scores"], 4)

    @timer_func
    def transcribe_different_model(self, image, htr_tool_transcriber_model_dropdown):
        device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

        if htr_tool_transcriber_model_dropdown == "pstroe/bullinger-general-model":
            processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
            image_processor = AutoImageProcessor.from_pretrained("pstroe/bullinger-general-model")
            model = VisionEncoderDecoderModel.from_pretrained("pstroe/bullinger-general-model")
            pixel_values = image_processor(image, return_tensors="pt").pixel_values.to(device)

        else:
            processor = TrOCRProcessor.from_pretrained(htr_tool_transcriber_model_dropdown)
            model = VisionEncoderDecoderModel.from_pretrained(htr_tool_transcriber_model_dropdown)
            pixel_values = processor(image, return_tensors="pt").pixel_values.to(device)

        model.to(device)

        generated_ids = model.generate(pixel_values)

        generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]

        return generated_text, 1.0


class InferencerInterface(Protocol):
    def predict_regions(
        self,
        image: np.array,
        pred_score_threshold: float,
        containments_threshold: float,
        visualize: bool = False,
    ) -> Tuple:
        ...

    def predict_lines(
        self,
        text_region: np.array,
        pred_score_threshold: float,
        containments_threshold: float,
        visualize: bool = False,
        custom_track: bool = False,
    ) -> Tuple:
        ...

    def transcribe(
        self,
        line: np.array,
    ) -> Tuple[str, float]:
        ...


if __name__ == "__main__":
    prediction_model = Inferencer()