File size: 6,869 Bytes
a03c9b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
"""preprocess_maps.py"""
import os
import glob
import re
import json
from typing import Dict, List, Tuple
import numpy as np
from utils.audio import get_audio_file_info
from utils.midi import midi2note, note_event2midi
from utils.note2event import note2note_event, note_event2event
from utils.event2note import event2note_event
from utils.note_event_dataclasses import Note, NoteEvent
from utils.utils import note_event2token2note_event_sanity_check
# from utils.utils import assert_note_events_almost_equal


def create_note_event_and_note_from_midi(mid_file: str,
                                         id: str,
                                         ignore_pedal: bool = False) -> Tuple[Dict, Dict]:
    """Extracts note or note_event and metadata from midi:

    Returns:
        notes (dict): note events and metadata.
        note_events (dict): note events and metadata.
    """
    notes, dur_sec = midi2note(
        mid_file,
        binary_velocity=True,
        ch_9_as_drum=False,
        force_all_drum=False,
        force_all_program_to=0,  # always piano
        trim_overlap=True,
        fix_offset=True,
        quantize=True,
        verbose=0,
        minimum_offset_sec=0.01,
        drum_offset_sec=0.01,
        ignore_pedal=ignore_pedal)
    return {  # notes
        'maps_id': id,
        'program': [0],
        'is_drum': [0],
        'duration_sec': dur_sec,
        'notes': notes,
    }, {  # note_events
        'maps_id': id,
        'program': [0],
        'is_drum': [0],
        'duration_sec': dur_sec,
        'note_events': note2note_event(notes),
    }


def rewrite_midi_120bpm(file: os.PathLike, note_events: List[NoteEvent]):
    """Rewrite midi file with 120 bpm."""
    note_event2midi(note_events, file)
    return


# def note_event2event_sanity_check(note_events: List[NoteEvent]):
#     """Sanity check for note events."""
#     events = note_event2event(note_events, None)
#     note_events2, _, _ = event2note_event(events)
#     assert_note_events_almost_equal(note_events, note_events2)


def preprocess_maps16k(data_home=os.PathLike,
                       dataset_name='maps',
                       ignore_pedal=False,
                       sanity_check=False) -> None:
    """
    Splits:
        - train: following the convention described in Cheuk et al. (2021),
            we filter out the songs overlapping with the MAPS test set. 
            139 pieces from MUS folder are left for training.
        - test: 60 files (MUS)
        - all: 270 files including (unfiltered) train and test. This is used 
           for the evaluation on the MusicNet test set. 


    Writes:
        - {dataset_name}_{split}_file_list.json: a dictionary with the following keys:
        {
            index:
            {
                'maps_id': maps_id,
                'n_frames': (int),
                'mix_audio_file': 'path/to/mix.wav',
                'notes_file': 'path/to/notes.npy',
                'note_events_file': 'path/to/note_events.npy',
                'midi_file': 'path/to/midi.mid',
                'program': List[int],
                'is_drum': List[int], # 0 or 1
            }
        }
    """

    # Directory and file paths
    base_dir = os.path.join(data_home, dataset_name + '_yourmt3_16k')
    output_index_dir = os.path.join(data_home, 'yourmt3_indexes')
    os.makedirs(output_index_dir, exist_ok=True)

    # Search for files with .mid and .wav (synth / acoustic) extensions
    train_mid_pattern = os.path.join(base_dir, 'train/**/MUS/*.mid')
    test_mid_pattern = os.path.join(base_dir, 'test/**/MUS/*.mid')
    all_mid_pattern = os.path.join(base_dir, '**/MUS/*.mid')

    train_mid_files = glob.glob(train_mid_pattern, recursive=True)
    test_mid_files = glob.glob(test_mid_pattern, recursive=True)
    all_mid_files = glob.glob(all_mid_pattern, recursive=True)

    # Discard duplicated songs from train and test sets (reduce train set)
    songnames_in_test_files = []
    for file in test_mid_files:
        filename = os.path.basename(file)
        match = re.search(r"MAPS_MUS-([\w-]+)_", filename)
        if match:
            songnames_in_test_files.append(match.group(1))

    filtered_train_mid_files = []
    filtered_train_wav_files = []
    for train_file in train_mid_files:
        if not any(
                songname in os.path.basename(train_file) for songname in songnames_in_test_files):
            filtered_train_mid_files.append(train_file)
            filtered_train_wav_files.append(train_file.replace('.mid', '.wav'))
    assert len(filtered_train_mid_files) == len(filtered_train_wav_files) == 139

    # Process MIDI files
    for i, mid_file in enumerate(all_mid_files):
        maps_id = os.path.basename(mid_file)[:-4]
        notes, note_events = create_note_event_and_note_from_midi(
            mid_file=mid_file, id=maps_id, ignore_pedal=ignore_pedal)

        if sanity_check:
            # sanity check
            print(f'Sanity check for {i}: {maps_id}...')
            note_event2token2note_event_sanity_check(note_events['note_events'], notes['notes'])

        notes_file = mid_file.replace('.mid', '_notes.npy')
        np.save(notes_file, notes, allow_pickle=True, fix_imports=False)
        print(f'Created {notes_file}')

        note_events_file = mid_file.replace('.mid', '_note_events.npy')
        np.save(note_events_file, note_events, allow_pickle=True, fix_imports=False)
        print(f'Created {note_events_file}')

        # overwrite midi file with 120 bpm
        rewrite_midi_120bpm(mid_file, note_events['note_events'])
        print(f'Overwrote {mid_file} with 120 bpm')

    # Process audio files
    pass

    # Create file_list.json
    mid_files_by_split = {
        'train': filtered_train_mid_files,
        'test': test_mid_files,
        'all': all_mid_files,
    }

    for split in ['train', 'test', 'all']:
        file_list = {}
        for i, mid_file in enumerate(mid_files_by_split[split]):
            # check if wav file exists
            wav_file = mid_file.replace('.mid', '.wav')
            if not os.path.exists(wav_file):
                raise FileNotFoundError(f'Wav file not found: {wav_file}')

            file_list[i] = {
                'maps_id': os.path.basename(mid_file)[:-4],
                'n_frames': get_audio_file_info(wav_file)[1],
                'mix_audio_file': wav_file,
                'notes_file': mid_file.replace('.mid', '_notes.npy'),
                'note_events_file': mid_file.replace('.mid', '_note_events.npy'),
                'midi_file': mid_file,
                'program': [0],
                'is_drum': [0],
            }
        output_file = os.path.join(output_index_dir, f'{dataset_name}_{split}_file_list.json')
        with open(output_file, 'w') as f:
            json.dump(file_list, f, indent=4)
        print(f'Created {output_file}')