Spaces:
Sleeping
Sleeping
File size: 18,254 Bytes
3cd7378 e4e30d6 b72dbfb 3cd7378 b72dbfb dc3e7cd 504d68e 13c547c 3cd7378 dc3e7cd 13c547c dc3e7cd 13c547c 0343376 13c547c dc3e7cd 13c547c dc3e7cd 3cd7378 13c547c 504d68e 13c547c 504d68e 13c547c 504d68e 13c547c 504d68e 13c547c 504d68e b84a40e 504d68e b84a40e 504d68e 13c547c 504d68e 13c547c 504d68e 13c547c 504d68e 13c547c 504d68e 13c547c 504d68e 13c547c 504d68e 13c547c 504d68e 13c547c b84a40e 504d68e b84a40e 504d68e b84a40e 13c547c b84a40e daeeeae 13c547c daeeeae 13c547c daeeeae 13c547c 504d68e daeeeae b84a40e 13c547c 504d68e 13c547c 504d68e 13c547c 504d68e 13c547c 504d68e 13c547c 504d68e 13c547c 504d68e daeeeae 13c547c 504d68e daeeeae 504d68e daeeeae 504d68e 13c547c 504d68e 13c547c 504d68e 13c547c 504d68e 13c547c 504d68e 3cd7378 13c547c dc3e7cd 3cd7378 504d68e 3cd7378 13c547c 73e646c 3cd7378 daeeeae 13c547c dc3e7cd 13c547c 504d68e 13c547c dc3e7cd 73e646c 504d68e 3cd7378 504d68e 829c455 13c547c 1a13bb0 13c547c 504d68e 13c547c 504d68e 13c547c 504d68e 13c547c 504d68e 13c547c 504d68e 13c547c 504d68e b84a40e 504d68e 13c547c 504d68e 13c547c 504d68e 13c547c 504d68e 13c547c daeeeae 504d68e 13c547c 3cd7378 daeeeae 13c547c 504d68e 13c547c 3cd7378 daeeeae 13c547c 504d68e 13c547c 3cd7378 daeeeae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 |
# --- 1. Import all the necessary tools ---
import gradio as gr
from ultralytics import YOLO
from huggingface_hub import hf_hub_download
import numpy as np
import cv2
import roboflow
from collections import Counter, defaultdict
import re
# --- 2. Load BOTH of your AI models ---
print("Downloading and loading models...")
# --- Model 1: The Character Detector (from Hugging Face) ---
character_model_path = hf_hub_download(
repo_id="MKgoud/License-Plate-Character-Detector",
filename="Charcter-LP.pt"
)
character_model = YOLO(character_model_path)
print("β
Character Detector loaded.")
# --- Model 2: The Plate Detector (from Roboflow) ---
ROBOFLOW_API_KEY = "YfKCsreNkoXYFD1CfMBY"
DETECTOR_WORKSPACE_ID = "mylprproject"
DETECTOR_PROJECT_ID = "license-plate-yuw1z-kirke"
DETECTOR_VERSION_NUMBER = 1
rf = roboflow.Roboflow(api_key=ROBOFLOW_API_KEY)
project_detector = rf.workspace(DETECTOR_WORKSPACE_ID).project(DETECTOR_PROJECT_ID)
plate_model = project_detector.version(DETECTOR_VERSION_NUMBER).model
print("β
Plate Detector loaded.")
# --- 3. Enhanced preprocessing functions ---
def enhance_plate_image(plate_crop):
"""
Apply multiple enhancement techniques to improve character visibility
"""
enhanced_crops = []
# Original image
enhanced_crops.append(plate_crop)
# Convert to grayscale and back to RGB for consistent processing
gray = cv2.cvtColor(plate_crop, cv2.COLOR_RGB2GRAY)
# Enhancement 1: Adaptive histogram equalization
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
enhanced_gray = clahe.apply(gray)
enhanced_crops.append(cv2.cvtColor(enhanced_gray, cv2.COLOR_GRAY2RGB))
# Enhancement 2: Gaussian blur + unsharp mask
blurred = cv2.GaussianBlur(gray, (3, 3), 0)
unsharp = cv2.addWeighted(gray, 1.8, blurred, -0.8, 0)
unsharp = np.clip(unsharp, 0, 255).astype(np.uint8)
enhanced_crops.append(cv2.cvtColor(unsharp, cv2.COLOR_GRAY2RGB))
# Enhancement 3: Contrast stretching
min_val, max_val = np.percentile(gray, [2, 98])
stretched = np.clip((gray - min_val) * 255 / (max_val - min_val), 0, 255).astype(np.uint8)
enhanced_crops.append(cv2.cvtColor(stretched, cv2.COLOR_GRAY2RGB))
# Enhancement 4: Gamma correction
gamma_corrected = np.power(gray / 255.0, 0.7) * 255
gamma_corrected = gamma_corrected.astype(np.uint8)
enhanced_crops.append(cv2.cvtColor(gamma_corrected, cv2.COLOR_GRAY2RGB))
return enhanced_crops
def smart_character_correction(text, pattern_analysis=True):
"""
Intelligent character correction based on license plate patterns
"""
if not text or len(text) < 3:
return text
# Remove any spaces first
text = text.replace(" ", "").upper()
# Philippine license plate patterns analysis
def analyze_likely_pattern(s):
"""Determine if sequence should be letters or numbers based on position and context"""
if len(s) < 6:
return s
# Common Philippine patterns: ABC123, ABC1234, 123ABC
# Most common is 3 letters + 3-4 numbers
corrected = list(s)
# Pattern 1: First 3 characters are typically letters
for i in range(min(3, len(corrected))):
char = corrected[i]
if char.isdigit():
# Convert numbers that look like letters
digit_to_letter = {'0': 'O', '1': 'I', '2': 'Z', '5': 'S', '6': 'G', '8': 'B'}
if char in digit_to_letter:
corrected[i] = digit_to_letter[char]
# Pattern 2: Characters after position 3 are typically numbers
for i in range(3, len(corrected)):
char = corrected[i]
if char.isalpha():
# Convert letters that look like numbers
letter_to_digit = {'O': '0', 'I': '1', 'L': '1', 'S': '5', 'G': '6', 'B': '8', 'Z': '2', 'T': '7'}
if char in letter_to_digit:
corrected[i] = letter_to_digit[char]
return ''.join(corrected)
# Apply pattern-based corrections if enabled
if pattern_analysis and len(text) >= 6:
text = analyze_likely_pattern(text)
# Additional common OCR error corrections
ocr_corrections = {
# Numbers that might be misread as letters
'Q': '0', # Q often confused with O/0
'D': '0', # D sometimes looks like 0
# Letters that might be misread as numbers
'A': 'A', # Keep A as is (could be confused with 4 but A is common in plates)
}
# Apply only high-confidence corrections
for old_char, new_char in ocr_corrections.items():
text = text.replace(old_char, new_char)
return text
def advanced_detection_filtering(boxes, character_results, plate_crop_shape, min_confidence=0.25):
"""
Advanced filtering with clustering and statistical analysis
"""
if len(boxes) == 0:
return []
detections = []
# Extract all detection info
for box in boxes:
confidence = float(box.conf[0])
if confidence < min_confidence:
continue
class_id = int(box.cls[0])
character = character_results[0].names[class_id]
x1, y1, x2, y2 = box.xyxy[0]
detections.append({
'char': character,
'conf': confidence,
'x1': float(x1), 'y1': float(y1), 'x2': float(x2), 'y2': float(y2),
'width': float(x2 - x1),
'height': float(y2 - y1),
'center_x': float((x1 + x2) / 2),
'center_y': float((y1 + y2) / 2),
'area': float((x2 - x1) * (y2 - y1))
})
if len(detections) == 0:
return []
plate_height, plate_width = plate_crop_shape[:2]
# Step 1: Focus on main character area (upper 75% of plate)
main_area_threshold = plate_height * 0.75
main_detections = [d for d in detections if d['center_y'] <= main_area_threshold]
if len(main_detections) < 3: # If too few in main area, expand slightly
main_area_threshold = plate_height * 0.85
main_detections = [d for d in detections if d['center_y'] <= main_area_threshold]
if len(main_detections) == 0:
main_detections = detections
# Step 2: Statistical filtering based on size and position
heights = [d['height'] for d in main_detections]
widths = [d['width'] for d in main_detections]
y_positions = [d['center_y'] for d in main_detections]
areas = [d['area'] for d in main_detections]
# Calculate robust statistics (using percentiles to avoid outlier influence)
median_height = np.median(heights)
median_width = np.median(widths)
median_y = np.median(y_positions)
q75_area = np.percentile(areas, 75)
# Step 3: Multi-criteria filtering
filtered_detections = []
for detection in main_detections:
# Size consistency check
height_ratio = detection['height'] / median_height
width_ratio = detection['width'] / median_width
# Vertical alignment check
y_deviation = abs(detection['center_y'] - median_y)
max_y_deviation = median_height * 0.5
# Minimum size threshold (avoid tiny noise detections)
min_size_threshold = plate_height * 0.12
# Area-based filtering (avoid unusually small detections)
area_threshold = q75_area * 0.3
# Apply all criteria
if (0.4 <= height_ratio <= 2.5 and
0.3 <= width_ratio <= 3.0 and
y_deviation <= max_y_deviation and
detection['height'] >= min_size_threshold and
detection['area'] >= area_threshold):
filtered_detections.append(detection)
# Step 4: Remove duplicate detections (same character in nearby positions)
final_detections = []
used_positions = []
# Sort by confidence first
filtered_detections.sort(key=lambda x: x['conf'], reverse=True)
for detection in filtered_detections:
# Check if this position is too close to already used positions
too_close = False
for used_x in used_positions:
if abs(detection['center_x'] - used_x) < median_width * 0.8:
too_close = True
break
if not too_close:
final_detections.append(detection)
used_positions.append(detection['center_x'])
return final_detections
def ensemble_character_voting(all_detections, plate_width, confidence_threshold=0.35):
"""
Advanced ensemble voting with spatial clustering and confidence weighting
"""
if not all_detections:
return []
# Step 1: Spatial clustering - group detections by x-position
position_groups = defaultdict(list)
cluster_tolerance = plate_width * 0.15 # 15% of plate width
for detection in all_detections:
x_pos = detection['center_x']
# Find existing cluster or create new one
assigned = False
for cluster_center in list(position_groups.keys()):
if abs(x_pos - cluster_center) <= cluster_tolerance:
position_groups[cluster_center].append(detection)
assigned = True
break
if not assigned:
position_groups[x_pos].append(detection)
# Step 2: For each spatial cluster, determine best character
final_characters = []
for cluster_center, cluster_detections in position_groups.items():
# Group by character within cluster
char_groups = defaultdict(list)
for det in cluster_detections:
char_groups[det['char']].append(det)
# Calculate weighted score for each character
best_char = None
best_score = 0
best_detection = None
for char, char_detections in char_groups.items():
# Calculate score: weighted average of confidence + occurrence bonus
confidences = [d['conf'] for d in char_detections]
avg_confidence = np.mean(confidences)
max_confidence = max(confidences)
occurrence_bonus = min(len(char_detections) * 0.1, 0.3) # Up to 30% bonus
# Final score combines average confidence, max confidence, and occurrence
score = (avg_confidence * 0.5 + max_confidence * 0.4 + occurrence_bonus * 0.1)
if score > best_score and avg_confidence > confidence_threshold:
best_score = score
best_char = char
# Use the detection with highest confidence as representative
best_detection = max(char_detections, key=lambda x: x['conf'])
if best_char and best_detection:
best_detection['final_char'] = best_char
best_detection['final_score'] = best_score
best_detection['cluster_size'] = len(cluster_detections)
final_characters.append(best_detection)
# Step 3: Sort by x-position for final ordering
final_characters.sort(key=lambda x: x['center_x'])
return final_characters
# --- 4. Enhanced main prediction function ---
def detect_license_plate(input_image):
"""
Enhanced version with improved filtering and ensemble voting
"""
print("New image received. Starting enhanced 2-stage pipeline...")
output_image = input_image.copy()
# --- STAGE 1: Find the license plate ---
plate_predictions = plate_model.predict(input_image, confidence=40, overlap=30).json()['predictions']
if not plate_predictions:
return output_image, "No license plate found."
# Get the highest confidence plate detection
plate_box = max(plate_predictions, key=lambda x: x['confidence'])
x1, y1, x2, y2 = [int(p) for p in [plate_box['x'] - plate_box['width'] / 2,
plate_box['y'] - plate_box['height'] / 2,
plate_box['x'] + plate_box['width'] / 2,
plate_box['y'] + plate_box['height'] / 2]]
# Optimized padding - minimal vertical to avoid extra text
h_padding = 10
v_padding = 2
y1 = max(0, y1 - v_padding)
x1 = max(0, x1 - h_padding)
y2 = min(input_image.shape[0], y2 + v_padding)
x2 = min(input_image.shape[1], x2 + h_padding)
plate_crop = input_image[y1:y2, x1:x2]
plate_height, plate_width = plate_crop.shape[:2]
# Focus on main number area (top 75% of plate)
main_number_crop = plate_crop[:int(plate_height * 0.75), :]
# --- STAGE 2: Multi-enhancement character detection ---
enhanced_crops = enhance_plate_image(main_number_crop)
all_detections = []
# Process each enhanced version with different confidence thresholds
confidence_levels = [0.25, 0.3, 0.35, 0.25] # Different thresholds for each enhancement
for i, (enhanced_crop, conf_threshold) in enumerate(zip(enhanced_crops, confidence_levels)):
try:
character_results = character_model(enhanced_crop, conf=conf_threshold, iou=0.3)
if character_results and hasattr(character_results[0], 'boxes') and len(character_results[0].boxes) > 0:
boxes = character_results[0].boxes.cpu().numpy()
filtered_detections = advanced_detection_filtering(
boxes, character_results, main_number_crop.shape, min_confidence=conf_threshold
)
print(f"Enhancement {i}: {len(boxes)} raw -> {len(filtered_detections)} filtered")
for detection in filtered_detections:
detection['enhancement_method'] = i
detection['enhancement_conf'] = conf_threshold
all_detections.append(detection)
except Exception as e:
print(f"Error processing enhancement {i}: {e}")
continue
# --- STAGE 3: Advanced ensemble voting ---
final_detections = ensemble_character_voting(all_detections, plate_width, confidence_threshold=0.3)
print(f"Ensemble voting: {len(all_detections)} total -> {len(final_detections)} final")
# --- STAGE 4: Generate and post-process text ---
if final_detections:
# Sort by x position
final_detections.sort(key=lambda x: x['center_x'])
raw_text = "".join([d['final_char'] for d in final_detections])
# Apply smart character correction
corrected_text = smart_character_correction(raw_text, pattern_analysis=True)
# Additional validation - remove obviously wrong characters
if len(corrected_text) > 8: # If too long, might have false positives
# Keep only the most confident detections
final_detections = sorted(final_detections, key=lambda x: x['final_score'], reverse=True)[:7]
final_detections.sort(key=lambda x: x['center_x'])
raw_text = "".join([d['final_char'] for d in final_detections])
corrected_text = smart_character_correction(raw_text, pattern_analysis=True)
else:
raw_text = ""
corrected_text = ""
# --- STAGE 5: Draw results ---
# Draw the main plate box
cv2.rectangle(output_image, (x1, y1), (x2, y2), (0, 0, 255), 2)
cv2.putText(output_image, f"Plate: {plate_box['confidence']:.1f}%",
(x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
# Draw detection area boundary
main_area_y = y1 + int(plate_height * 0.75)
cv2.line(output_image, (x1, main_area_y), (x2, main_area_y), (255, 255, 0), 2)
cv2.putText(output_image, "Detection Area", (x1, main_area_y - 5),
cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255, 255, 0), 1)
# Draw character detections
for i, detection in enumerate(final_detections):
abs_x1 = x1 + int(detection['x1'])
abs_y1 = y1 + int(detection['y1'])
abs_x2 = x1 + int(detection['x2'])
abs_y2 = y1 + int(detection['y2'])
# Color code by confidence
color = (0, 255, 0) if detection['final_score'] > 0.7 else (0, 255, 255)
cv2.rectangle(output_image, (abs_x1, abs_y1), (abs_x2, abs_y2), color, 2)
cv2.putText(output_image, f"{detection['final_char']}",
(abs_x1, abs_y1 - 15), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
cv2.putText(output_image, f"{detection['final_score']:.2f}",
(abs_x1, abs_y1 - 3), cv2.FONT_HERSHEY_SIMPLEX, 0.4, color, 1)
# Prepare result text
if raw_text != corrected_text and corrected_text:
result_text = f"Detected: {raw_text}\nCorrected: {corrected_text}\nConfidence: {len(final_detections)} chars"
elif corrected_text:
result_text = f"Result: {corrected_text}\nConfidence: {len(final_detections)} characters detected"
else:
result_text = "No characters detected with sufficient confidence"
print(f"Final result: {result_text}")
return output_image, result_text
# --- 5. Create the Gradio Web Interface ---
with gr.Blocks() as demo:
gr.Markdown("# Enhanced High-Accuracy License Plate Detector")
gr.Markdown("""
**Improved Features:**
- Advanced statistical filtering with spatial clustering
- Smart character correction based on license plate patterns
- Enhanced ensemble voting with confidence weighting
- Optimized detection area focusing
- Multi-level confidence thresholds
""")
with gr.Row():
image_input = gr.Image(type="numpy", label="Upload License Plate Image")
image_output = gr.Image(type="numpy", label="Detection Results")
text_output = gr.Textbox(label="Detected License Plate", lines=3)
predict_button = gr.Button(value="Detect License Plate", variant="primary")
predict_button.click(
fn=detect_license_plate,
inputs=image_input,
outputs=[image_output, text_output]
)
# --- 6. Launch the application ---
demo.launch() |