File size: 4,892 Bytes
5195825
 
 
 
 
 
 
 
 
 
fd326aa
8c57520
5195825
8c57520
646e64c
8c57520
 
 
5195825
 
fd326aa
8c57520
 
 
 
 
 
 
 
 
 
 
 
 
fd326aa
8c57520
 
fd326aa
8c57520
fd326aa
 
 
8c57520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5195825
8c57520
cae734b
8c57520
5195825
 
ae5932c
 
 
 
 
5195825
ae5932c
5195825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cae734b
5195825
 
 
 
 
 
fd326aa
5195825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d303e1d
 
 
 
5195825
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import streamlit as st
from transformers import WhisperForConditionalGeneration, WhisperProcessor
from transformers import pipeline
import librosa
import torch
from spleeter.separator import Separator
from pydub import AudioSegment
from IPython.display import Audio
import os
import accelerate
#import pyaudio
import numpy as np

# Create PyAudio object
#p = pyaudio.PyAudio()
CHUNK_SIZE = 1024
SAMPLING_RATE = 16000
vocals_data = bytes()

# preprocess and crop audio file
def audio_preprocess(input_file): #, in_data, frame_count, time_info, status):

# Define callback function for audio processing

    global vocals_data
    # Convert input data to numpy array
    audio_array = np.frombuffer(input_file, dtype=np.int16)
    
    # Perform vocal removal on the audio input
    # Pass the audio array as waveform to separate() method
    vocals = Separator('spleeter:2stems').separate(audio_array)
    
    # Convert vocals to audio data
    vocals_data = vocals['vocals'].flatten().astype(np.int16).tobytes()
    separated_audio = vocals_data
    
    # Return processed data for output
    return vocals_data, pyaudio.paContinue, processed_audio

    
# audio processing 2?
def py_audio():
    # Open stream for recording
    stream = p.open(format=pyaudio.paInt16, channels=1, rate=SAMPLING_RATE, input=True, output=True,
                    frames_per_buffer=CHUNK_SIZE, stream_callback=process_audio)
    
    # Start stream
    stream.start_stream()
    
    # Create stream for playback
    playback_stream = p.open(format=pyaudio.paInt16, channels=1, rate=SAMPLING_RATE, output=True)
    
    # Play processed data in real-time
    while stream.is_active():
        if len(vocals_data) >= CHUNK_SIZE:
            playback_stream.write(vocals_data[:CHUNK_SIZE])
            vocals_data = vocals_data[CHUNK_SIZE:]
    
    # Stop streams
    stream.stop_stream()
    stream.close()
    playback_stream.stop_stream()
    playback_stream.close()
    
    # Terminate PyAudio object
    p.terminate()
    
    # Now 'processed_file' contains the separated vocals
    separated_audio = vocals_data

    
   # separate music and vocal
    #separator = Separator('spleeter:2stems')
   #separator.separate_to_file(input_file, output_file)
    #separated_audio = separator.separate(input_file)

   # Crop the audio
    start_time = 60000  # e.g. 30 seconds, 30000
    end_time = 110000  # e.g. 40 seconds, 40000
    audio = AudioSegment.from_file(separated_audio)
    cropped_audio = audio[start_time:end_time]
    processed_audio = cropped_audio
   # .export('cropped_vocals.wav', format='wav') # save vocal audio file
    return processed_audio


# ASR transcription
def asr_model(processed_audio):
   # load audio file
   y, sr = librosa.load(processed_audio, sr=16000)


   # ASR model
   MODEL_NAME = "RexChan/ISOM5240-whisper-small-zhhk_1"
   processor = WhisperProcessor.from_pretrained(MODEL_NAME)
   model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME, low_cpu_mem_usage=True)


   model.config.forced_decoder_ids = None
   model.config.suppress_tokens = []
   model.config.use_cache = False


   processed_in = processor(y, sampling_rate=sr, return_tensors="pt")
   gout = model.generate(
       input_features=processed_in.input_features,
       output_scores=True, return_dict_in_generate=True
   )
   transcription = processor.batch_decode(gout.sequences, skip_special_tokens=True)[0]


   # print result
   print(f"Song lyrics = {transcription}")


   return transcription




# sentiment analysis
def senti_model(transcription):


   pipe = pipeline("text-classification", model="lxyuan/distilbert-base-multilingual-cased-sentiments-student")
   final_result = pipe(transcription)
   display = f"Sentiment Analysis shows that this song is {final_result[0]['label']}. Confident level of this analysis is {final_result[0]['score']*100:.1f}%."
   print(display)

   return display


# main
def main(input_file):


   separated_audio = audio_preprocess(input_file)
   transcription = asr_model(processed_audio)
   final_result = senti_model(transcription)
   st.write(final_result)


   if st.button("Play Audio"):
       st.audio(audio_data['audio'],
                   format="audio/wav",
                   start_time=0,
                   sample_rate = audio_data['sampling_rate'])




if __name__ == '__main__':

   # steamlit setup
   st.set_page_config(page_title="Sentiment Analysis on Your Cantonese Song",)
   st.header("Cantonese Song Sentiment Analyzer")
    
   input_file = "/test1.mp3" 
   #input_file = st.file_uploader("upload a song in mp3 format", type="mp3") # upload song
    
   if input_file is not None:
       st.write("File uploaded successfully!")
       st.write(input_file)
   else:
       st.write("No file uploaded.")
   button_click = st.button("Run Analysis", type="primary")

   if button_click:
       main(input_file=input_file)