File size: 7,263 Bytes
d5f497d
 
 
6c91ee7
66fd925
6c91ee7
 
011d756
d5f497d
6c91ee7
66fd925
d5f497d
 
66fd925
6c91ee7
 
 
66fd925
 
6c91ee7
d5f497d
 
 
66fd925
d5f497d
 
 
 
 
6c91ee7
66fd925
 
 
 
 
 
 
 
 
 
 
 
 
6c91ee7
d5f497d
66fd925
211b362
66fd925
 
d5f497d
66fd925
 
6c91ee7
66fd925
 
 
 
 
6c91ee7
66fd925
 
 
 
 
 
 
 
 
 
 
 
 
 
d5f497d
 
8004741
98c6239
d5f497d
 
66fd925
6c91ee7
9de30d4
66fd925
6c91ee7
2502de8
66fd925
6c91ee7
d5f497d
 
 
2502de8
66fd925
 
 
 
 
 
 
 
 
 
 
 
cd4f227
e9f3ef9
66fd925
 
 
 
e9f3ef9
66fd925
 
 
 
 
e9f3ef9
fad18b4
66fd925
 
78ad020
66fd925
 
 
d5f497d
 
66fd925
d5f497d
 
 
d890da3
d5f497d
 
 
 
 
20c2217
83bde13
20c2217
d5f497d
 
f92dc60
 
 
 
 
 
 
d5f497d
 
 
 
 
 
d890da3
d5f497d
6c91ee7
 
d5f497d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66fd925
d5f497d
 
 
 
 
 
66fd925
d5f497d
78ad020
66fd925
d5f497d
 
66fd925
9de30d4
d5f497d
 
 
66fd925
 
fad18b4
7132521
d5f497d
 
66fd925
 
 
9de30d4
78ad020
 
 
8004741
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import spaces
import random
import torch
import cv2
import insightface
import gradio as gr
import numpy as np
import os
from huggingface_hub import snapshot_download
from transformers import CLIPVisionModelWithProjection,CLIPImageProcessor
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter_FaceID import StableDiffusionXLPipeline
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from diffusers import AutoencoderKL
from kolors.models.unet_2d_condition import UNet2DConditionModel
from diffusers import EulerDiscreteScheduler
from PIL import Image
from insightface.app import FaceAnalysis
from insightface.data import get_image as ins_get_image


device = "cuda"
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
ckpt_dir_faceid = snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-FaceID-Plus")

text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
clip_image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'{ckpt_dir_faceid}/clip-vit-large-patch14-336', ignore_mismatched_sizes=True)
clip_image_encoder.to(device)
clip_image_processor = CLIPImageProcessor(size = 336, crop_size = 336)

pipe = StableDiffusionXLPipeline(
    vae = vae,
    text_encoder = text_encoder,
    tokenizer = tokenizer,
    unet = unet,
    scheduler = scheduler,
    face_clip_encoder = clip_image_encoder,
    face_clip_processor = clip_image_processor,
    force_zeros_for_empty_prompt = False,
)

class FaceInfoGenerator():
    def __init__(self, root_dir = "./.insightface/"):
        self.app = FaceAnalysis(name = 'antelopev2', root = root_dir, providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
        self.app.prepare(ctx_id = 0, det_size = (640, 640))

    def get_faceinfo_one_img(self, face_image):
        face_info = self.app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))

        if len(face_info) == 0:
            face_info = None
        else:
            face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1]  # only use the maximum face
        return face_info

def face_bbox_to_square(bbox):
    ## l, t, r, b to square l, t, r, b
    l,t,r,b = bbox
    cent_x = (l + r) / 2
    cent_y = (t + b) / 2
    w, h = r - l, b - t
    r = max(w, h) / 2

    l0 = cent_x - r
    r0 = cent_x + r
    t0 = cent_y - r
    b0 = cent_y + r

    return [l0, t0, r0, b0]

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
face_info_generator = FaceInfoGenerator()

@spaces.GPU
def infer(prompt, 
          image = None, 
          negative_prompt = "nsfw,脸部阴影,低分辨率,jpeg伪影、模糊、糟糕,黑脸,霓虹灯", 
          seed = 66, 
          randomize_seed = False,
          guidance_scale = 5.0, 
          num_inference_steps = 50
        ):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    global pipe
    pipe = pipe.to(device)
    pipe.load_ip_adapter_faceid_plus(f'{ckpt_dir_faceid}/ipa-faceid-plus.bin', device = device)
    scale = 0.8
    pipe.set_face_fidelity_scale(scale)   

    face_info = face_info_generator.get_faceinfo_one_img(image)
    face_bbox_square = face_bbox_to_square(face_info["bbox"])
    crop_image = image.crop(face_bbox_square)
    crop_image = crop_image.resize((336, 336))
    crop_image = [crop_image]
    face_embeds = torch.from_numpy(np.array([face_info["embedding"]]))
    face_embeds = face_embeds.to(device, dtype = torch.float16)

    image = pipe(
        prompt = prompt,
        negative_prompt = negative_prompt, 
        height = 1024,
        width = 1024,
        num_inference_steps= num_inference_steps, 
        guidance_scale = guidance_scale,
        num_images_per_prompt = 1,
        generator = generator,
        face_crop_image = crop_image,
        face_insightface_embeds = face_embeds
    ).images[0]

    return image, seed


examples = [
    ["穿着晚礼服,在星光下的晚宴场景中,烛光闪闪,整个场景洋溢着浪漫而奢华的氛围", "image/image1.png"],
    ["西部牛仔,牛仔帽,荒野大镖客,背景是西部小镇,仙人掌,,日落余晖, 暖色调, 使用XT4胶片拍摄, 噪点, 晕影, 柯达胶卷,复古", "image/image2.png"]
]


css="""
#col-left {
    margin: 0 auto;
    max-width: 600px;
}
#col-right {
    margin: 0 auto;
    max-width: 750px;
}
#button {
    color: blue;
}
"""

def load_description(fp):
    with open(fp, 'r', encoding='utf-8') as f:
        content = f.read()
    return content

with gr.Blocks(css=css) as Kolors:
    gr.HTML(load_description("assets/title.md"))
    with gr.Row():
        with gr.Column(elem_id="col-left"):
            with gr.Row():
                prompt = gr.Textbox(
                    label="Prompt",
                    placeholder="Enter your prompt",
                    lines=2
                )
            with gr.Row():
                image = gr.Image(label="Image", type="pil")
            with gr.Accordion("Advanced Settings", open=False):
                negative_prompt = gr.Textbox(
                    label="Negative prompt",
                    placeholder="Enter a negative prompt",
                    visible=True,
                )
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                with gr.Row():
                    guidance_scale = gr.Slider(
                        label="Guidance scale",
                        minimum=0.0,
                        maximum=10.0,
                        step=0.1,
                        value=5.0,
                    )
                    num_inference_steps = gr.Slider(
                        label="Number of inference steps",
                        minimum=10,
                        maximum=50,
                        step=1,
                        value=25,
                    )
            with gr.Row():
                button = gr.Button("Run", elem_id="button")
            
        with gr.Column(elem_id="col-right"):
            result = gr.Image(label="Result", show_label=False)
            seed_used = gr.Number(label="Seed Used")
    
    with gr.Row():
        gr.Examples(
                fn = infer,
                examples = examples,
                inputs = [prompt, image],
                outputs = [result, seed_used],
            )

    button.click(
        fn = infer,
        inputs = [prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps],
        outputs = [result, seed_used]
    )


Kolors.queue().launch(debug=True)