Spaces:
Running
Running
File size: 32,468 Bytes
635f007 addff22 635f007 675a486 635f007 394f443 635f007 394f443 635f007 675a486 635f007 6d98758 635f007 f490eec 635f007 3286d6d 635f007 3286d6d 635f007 5cf7b18 394f443 635f007 5cf7b18 394f443 5cf7b18 635f007 5cf7b18 635f007 5cf7b18 635f007 5cf7b18 635f007 5cf7b18 635f007 5cf7b18 635f007 5cf7b18 635f007 5cf7b18 635f007 5cf7b18 635f007 5cf7b18 635f007 5cf7b18 635f007 5cf7b18 635f007 5cf7b18 635f007 5cf7b18 635f007 5cf7b18 635f007 5cf7b18 635f007 5cf7b18 635f007 5cf7b18 635f007 5cf7b18 635f007 394f443 635f007 addff22 635f007 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 |
from cached_path import cached_path
# print("GRUUT")
# from gruut_phonemize import gphonemize
# from dp.phonemizer import Phonemizer
print("NLTK")
import nltk
nltk.download('punkt')
print("SCIPY")
from scipy.io.wavfile import write
print("TORCH STUFF")
import torch
print("START")
torch.manual_seed(0)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
import random
random.seed(0)
import numpy as np
np.random.seed(0)
# load packages
import time
import random
import yaml
from munch import Munch
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torchaudio
import librosa
from nltk.tokenize import word_tokenize
from models import *
from utils import *
from text_utils import TextCleaner
textclenaer = TextCleaner()
from cached_path import cached_path
import torch
torch.manual_seed(0)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
import random
random.seed(0)
import numpy as np
np.random.seed(0)
import nltk
nltk.download('punkt')
# load packages
import time
import random
import yaml
from munch import Munch
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torchaudio
import librosa
from nltk.tokenize import word_tokenize
from models import *
from utils import *
from text_utils import TextCleaner
textclenaer = TextCleaner()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
to_mel = torchaudio.transforms.MelSpectrogram(
n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
mean, std = -4, 4
def length_to_mask(lengths):
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
mask = torch.gt(mask+1, lengths.unsqueeze(1))
return mask
def preprocess(wave):
wave_tensor = torch.from_numpy(wave).float()
mel_tensor = to_mel(wave_tensor)
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
return mel_tensor
def compute_style(ref_dicts):
reference_embeddings = {}
for key, path in ref_dicts.items():
wave, sr = librosa.load(path, sr=24000)
audio, index = librosa.effects.trim(wave, top_db=30)
if sr != 24000:
audio = librosa.resample(audio, sr, 24000)
mel_tensor = preprocess(audio).to(device)
with torch.no_grad():
ref = model.style_encoder(mel_tensor.unsqueeze(1))
reference_embeddings[key] = (ref.squeeze(1), audio)
return reference_embeddings
# load phonemizer
# import phonemizer
# global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True, words_mismatch='ignore')
# phonemizer = Phonemizer.from_checkpoint(str(cached_path('https://public-asai-dl-models.s3.eu-central-1.amazonaws.com/DeepPhonemizer/en_us_cmudict_ipa_forward.pt')))
import fugashi
import pykakasi
from collections import OrderedDict
# MB-iSTFT-VITS2
import re
from unidecode import unidecode
import pyopenjtalk
# Regular expression matching Japanese without punctuation marks:
_japanese_characters = re.compile(
r'[A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')
# Regular expression matching non-Japanese characters or punctuation marks:
_japanese_marks = re.compile(
r'[^A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')
# List of (symbol, Japanese) pairs for marks:
_symbols_to_japanese = [(re.compile('%s' % x[0]), x[1]) for x in [
('%', 'パーセント')
]]
# List of (romaji, ipa) pairs for marks:
_romaji_to_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [
('ts', 'ʦ'),
('u', 'ɯ'),
('j', 'ʥ'),
('y', 'j'),
('ni', 'n^i'),
('nj', 'n^'),
('hi', 'çi'),
('hj', 'ç'),
('f', 'ɸ'),
('I', 'i*'),
('U', 'ɯ*'),
('r', 'ɾ')
]]
# List of (romaji, ipa2) pairs for marks:
_romaji_to_ipa2 = [(re.compile('%s' % x[0]), x[1]) for x in [
('u', 'ɯ'),
('ʧ', 'tʃ'),
('j', 'dʑ'),
('y', 'j'),
('ni', 'n^i'),
('nj', 'n^'),
('hi', 'çi'),
('hj', 'ç'),
('f', 'ɸ'),
('I', 'i*'),
('U', 'ɯ*'),
('r', 'ɾ')
]]
# List of (consonant, sokuon) pairs:
_real_sokuon = [(re.compile('%s' % x[0]), x[1]) for x in [
(r'Q([↑↓]*[kg])', r'k#\1'),
(r'Q([↑↓]*[tdjʧ])', r't#\1'),
(r'Q([↑↓]*[sʃ])', r's\1'),
(r'Q([↑↓]*[pb])', r'p#\1')
]]
# List of (consonant, hatsuon) pairs:
_real_hatsuon = [(re.compile('%s' % x[0]), x[1]) for x in [
(r'N([↑↓]*[pbm])', r'm\1'),
(r'N([↑↓]*[ʧʥj])', r'n^\1'),
(r'N([↑↓]*[tdn])', r'n\1'),
(r'N([↑↓]*[kg])', r'ŋ\1')
]]
def symbols_to_japanese(text):
for regex, replacement in _symbols_to_japanese:
text = re.sub(regex, replacement, text)
return text
def japanese_to_romaji_with_accent(text):
'''Reference https://r9y9.github.io/ttslearn/latest/notebooks/ch10_Recipe-Tacotron.html'''
text = symbols_to_japanese(text)
sentences = re.split(_japanese_marks, text)
marks = re.findall(_japanese_marks, text)
text = ''
for i, sentence in enumerate(sentences):
if re.match(_japanese_characters, sentence):
if text != '':
text += ' '
labels = pyopenjtalk.extract_fullcontext(sentence)
for n, label in enumerate(labels):
phoneme = re.search(r'\-([^\+]*)\+', label).group(1)
if phoneme not in ['sil', 'pau']:
text += phoneme.replace('ch', 'ʧ').replace('sh',
'ʃ').replace('cl', 'Q')
else:
continue
# n_moras = int(re.search(r'/F:(\d+)_', label).group(1))
a1 = int(re.search(r"/A:(\-?[0-9]+)\+", label).group(1))
a2 = int(re.search(r"\+(\d+)\+", label).group(1))
a3 = int(re.search(r"\+(\d+)/", label).group(1))
if re.search(r'\-([^\+]*)\+', labels[n + 1]).group(1) in ['sil', 'pau']:
a2_next = -1
else:
a2_next = int(
re.search(r"\+(\d+)\+", labels[n + 1]).group(1))
# Accent phrase boundary
if a3 == 1 and a2_next == 1:
text += ' '
# Falling
elif a1 == 0 and a2_next == a2 + 1:
text += '↓'
# Rising
elif a2 == 1 and a2_next == 2:
text += '↑'
if i < len(marks):
text += unidecode(marks[i]).replace(' ', '')
return text
def get_real_sokuon(text):
for regex, replacement in _real_sokuon:
text = re.sub(regex, replacement, text)
return text
def get_real_hatsuon(text):
for regex, replacement in _real_hatsuon:
text = re.sub(regex, replacement, text)
return text
def japanese_to_ipa(text):
text = japanese_to_romaji_with_accent(text).replace('...', '…')
text = re.sub(
r'([aiueo])\1+', lambda x: x.group(0)[0]+'ː'*(len(x.group(0))-1), text)
text = get_real_sokuon(text)
text = get_real_hatsuon(text)
for regex, replacement in _romaji_to_ipa:
text = re.sub(regex, replacement, text)
return text
def japanese_to_ipa2(text):
text = japanese_to_romaji_with_accent(text).replace('...', '…')
text = get_real_sokuon(text)
text = get_real_hatsuon(text)
for regex, replacement in _romaji_to_ipa2:
text = re.sub(regex, replacement, text)
return text
def japanese_to_ipa3(text):
text = japanese_to_ipa2(text).replace('n^', 'ȵ').replace(
'ʃ', 'ɕ').replace('*', '\u0325').replace('#', '\u031a')
text = re.sub(
r'([aiɯeo])\1+', lambda x: x.group(0)[0]+'ː'*(len(x.group(0))-1), text)
text = re.sub(r'((?:^|\s)(?:ts|tɕ|[kpt]))', r'\1ʰ', text)
return text
""" from https://github.com/keithito/tacotron """
'''
Cleaners are transformations that run over the input text at both training and eval time.
Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"
hyperparameter. Some cleaners are English-specific. You'll typically want to use:
1. "english_cleaners" for English text
2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using
the Unidecode library (https://pypi.python.org/pypi/Unidecode)
3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update
the symbols in symbols.py to match your data).
'''
# Regular expression matching whitespace:
import re
import inflect
from unidecode import unidecode
_inflect = inflect.engine()
_comma_number_re = re.compile(r'([0-9][0-9\,]+[0-9])')
_decimal_number_re = re.compile(r'([0-9]+\.[0-9]+)')
_pounds_re = re.compile(r'£([0-9\,]*[0-9]+)')
_dollars_re = re.compile(r'\$([0-9\.\,]*[0-9]+)')
_ordinal_re = re.compile(r'[0-9]+(st|nd|rd|th)')
_number_re = re.compile(r'[0-9]+')
# List of (regular expression, replacement) pairs for abbreviations:
_abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [
('mrs', 'misess'),
('mr', 'mister'),
('dr', 'doctor'),
('st', 'saint'),
('co', 'company'),
('jr', 'junior'),
('maj', 'major'),
('gen', 'general'),
('drs', 'doctors'),
('rev', 'reverend'),
('lt', 'lieutenant'),
('hon', 'honorable'),
('sgt', 'sergeant'),
('capt', 'captain'),
('esq', 'esquire'),
('ltd', 'limited'),
('col', 'colonel'),
('ft', 'fort'),
]]
# List of (ipa, lazy ipa) pairs:
_lazy_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [
('r', 'ɹ'),
('æ', 'e'),
('ɑ', 'a'),
('ɔ', 'o'),
('ð', 'z'),
('θ', 's'),
('ɛ', 'e'),
('ɪ', 'i'),
('ʊ', 'u'),
('ʒ', 'ʥ'),
('ʤ', 'ʥ'),
('', '↓'),
]]
# List of (ipa, lazy ipa2) pairs:
_lazy_ipa2 = [(re.compile('%s' % x[0]), x[1]) for x in [
('r', 'ɹ'),
('ð', 'z'),
('θ', 's'),
('ʒ', 'ʑ'),
('ʤ', 'dʑ'),
('', '↓'),
]]
# List of (ipa, ipa2) pairs
_ipa_to_ipa2 = [(re.compile('%s' % x[0]), x[1]) for x in [
('r', 'ɹ'),
('ʤ', 'dʒ'),
('ʧ', 'tʃ')
]]
def expand_abbreviations(text):
for regex, replacement in _abbreviations:
text = re.sub(regex, replacement, text)
return text
def collapse_whitespace(text):
return re.sub(r'\s+', ' ', text)
def _remove_commas(m):
return m.group(1).replace(',', '')
def _expand_decimal_point(m):
return m.group(1).replace('.', ' point ')
def _expand_dollars(m):
match = m.group(1)
parts = match.split('.')
if len(parts) > 2:
return match + ' dollars' # Unexpected format
dollars = int(parts[0]) if parts[0] else 0
cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0
if dollars and cents:
dollar_unit = 'dollar' if dollars == 1 else 'dollars'
cent_unit = 'cent' if cents == 1 else 'cents'
return '%s %s, %s %s' % (dollars, dollar_unit, cents, cent_unit)
elif dollars:
dollar_unit = 'dollar' if dollars == 1 else 'dollars'
return '%s %s' % (dollars, dollar_unit)
elif cents:
cent_unit = 'cent' if cents == 1 else 'cents'
return '%s %s' % (cents, cent_unit)
else:
return 'zero dollars'
def _expand_ordinal(m):
return _inflect.number_to_words(m.group(0))
def _expand_number(m):
num = int(m.group(0))
if num > 1000 and num < 3000:
if num == 2000:
return 'two thousand'
elif num > 2000 and num < 2010:
return 'two thousand ' + _inflect.number_to_words(num % 100)
elif num % 100 == 0:
return _inflect.number_to_words(num // 100) + ' hundred'
else:
return _inflect.number_to_words(num, andword='', zero='oh', group=2).replace(', ', ' ')
else:
return _inflect.number_to_words(num, andword='')
def normalize_numbers(text):
text = re.sub(_comma_number_re, _remove_commas, text)
text = re.sub(_pounds_re, r'\1 pounds', text)
text = re.sub(_dollars_re, _expand_dollars, text)
text = re.sub(_decimal_number_re, _expand_decimal_point, text)
text = re.sub(_ordinal_re, _expand_ordinal, text)
text = re.sub(_number_re, _expand_number, text)
return text
def mark_dark_l(text):
return re.sub(r'l([^aeiouæɑɔəɛɪʊ ]*(?: |$))', lambda x: 'ɫ'+x.group(1), text)
import re
#from text.thai import num_to_thai, latin_to_thai
#from text.shanghainese import shanghainese_to_ipa
#from text.cantonese import cantonese_to_ipa
#from text.ngu_dialect import ngu_dialect_to_ipa
from unidecode import unidecode
_whitespace_re = re.compile(r'\s+')
# Regular expression matching Japanese without punctuation marks:
_japanese_characters = re.compile(r'[A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')
# Regular expression matching non-Japanese characters or punctuation marks:
_japanese_marks = re.compile(r'[^A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')
# List of (regular expression, replacement) pairs for abbreviations:
_abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [
('mrs', 'misess'),
('mr', 'mister'),
('dr', 'doctor'),
('st', 'saint'),
('co', 'company'),
('jr', 'junior'),
('maj', 'major'),
('gen', 'general'),
('drs', 'doctors'),
('rev', 'reverend'),
('lt', 'lieutenant'),
('hon', 'honorable'),
('sgt', 'sergeant'),
('capt', 'captain'),
('esq', 'esquire'),
('ltd', 'limited'),
('col', 'colonel'),
('ft', 'fort'),
]]
def expand_abbreviations(text):
for regex, replacement in _abbreviations:
text = re.sub(regex, replacement, text)
return text
def collapse_whitespace(text):
return re.sub(_whitespace_re, ' ', text)
def convert_to_ascii(text):
return unidecode(text)
def basic_cleaners(text):
# - For replication of https://github.com/FENRlR/MB-iSTFT-VITS2/issues/2
# you may need to replace the symbol to Russian one
'''Basic pipeline that lowercases and collapses whitespace without transliteration.'''
text = text.lower()
text = collapse_whitespace(text)
return text
'''
def fix_g2pk2_error(text):
new_text = ""
i = 0
while i < len(text) - 4:
if (text[i:i+3] == 'ㅇㅡㄹ' or text[i:i+3] == 'ㄹㅡㄹ') and text[i+3] == ' ' and text[i+4] == 'ㄹ':
new_text += text[i:i+3] + ' ' + 'ㄴ'
i += 5
else:
new_text += text[i]
i += 1
new_text += text[i:]
return new_text
'''
def japanese_cleaners(text):
text = japanese_to_romaji_with_accent(text)
text = re.sub(r'([A-Za-z])$', r'\1.', text)
return text
def japanese_cleaners2(text):
return japanese_cleaners(text).replace('ts', 'ʦ').replace('...', '…')
def japanese_cleaners3(text):
text = japanese_to_ipa3(text)
if "<<" in text or ">>" in text or "¡" in text or "¿" in text:
text = text.replace("<<","«")
text = text.replace(">>","»")
text = text.replace("!","¡")
text = text.replace("?","¿")
if'"'in text:
text = text.replace('"','”')
if'--'in text:
text = text.replace('--','—')
if ' ' in text:
text = text.replace(' ','')
return text
# ------------------------------
''' cjke type cleaners below '''
#- text for these cleaners must be labeled first
# ex1 (single) : some.wav|[EN]put some text here[EN]
# ex2 (multi) : some.wav|0|[EN]put some text here[EN]
# ------------------------------
def kej_cleaners(text):
text = re.sub(r'\[KO\](.*?)\[KO\]',
lambda x: korean_to_ipa(x.group(1))+' ', text)
text = re.sub(r'\[EN\](.*?)\[EN\]',
lambda x: english_to_ipa2(x.group(1)) + ' ', text)
text = re.sub(r'\[JA\](.*?)\[JA\]',
lambda x: japanese_to_ipa2(x.group(1)) + ' ', text)
text = re.sub(r'\s+$', '', text)
text = re.sub(r'([^\.,!\?\-…~])$', r'\1.', text)
return text
def cjks_cleaners(text):
text = re.sub(r'\[JA\](.*?)\[JA\]',
lambda x: japanese_to_ipa(x.group(1))+' ', text)
#text = re.sub(r'\[SA\](.*?)\[SA\]',
# lambda x: devanagari_to_ipa(x.group(1))+' ', text)
text = re.sub(r'\[EN\](.*?)\[EN\]',
lambda x: english_to_lazy_ipa(x.group(1))+' ', text)
text = re.sub(r'\s+$', '', text)
text = re.sub(r'([^\.,!\?\-…~])$', r'\1.', text)
return text
'''
#- reserves
def thai_cleaners(text):
text = num_to_thai(text)
text = latin_to_thai(text)
return text
def shanghainese_cleaners(text):
text = shanghainese_to_ipa(text)
text = re.sub(r'([^\.,!\?\-…~])$', r'\1.', text)
return text
def chinese_dialect_cleaners(text):
text = re.sub(r'\[ZH\](.*?)\[ZH\]',
lambda x: chinese_to_ipa2(x.group(1))+' ', text)
text = re.sub(r'\[JA\](.*?)\[JA\]',
lambda x: japanese_to_ipa3(x.group(1)).replace('Q', 'ʔ')+' ', text)
text = re.sub(r'\[SH\](.*?)\[SH\]', lambda x: shanghainese_to_ipa(x.group(1)).replace('1', '˥˧').replace('5',
'˧˧˦').replace('6', '˩˩˧').replace('7', '˥').replace('8', '˩˨').replace('ᴀ', 'ɐ').replace('ᴇ', 'e')+' ', text)
text = re.sub(r'\[GD\](.*?)\[GD\]',
lambda x: cantonese_to_ipa(x.group(1))+' ', text)
text = re.sub(r'\[EN\](.*?)\[EN\]',
lambda x: english_to_lazy_ipa2(x.group(1))+' ', text)
text = re.sub(r'\[([A-Z]{2})\](.*?)\[\1\]', lambda x: ngu_dialect_to_ipa(x.group(2), x.group(
1)).replace('ʣ', 'dz').replace('ʥ', 'dʑ').replace('ʦ', 'ts').replace('ʨ', 'tɕ')+' ', text)
text = re.sub(r'\s+$', '', text)
text = re.sub(r'([^\.,!\?\-…~])$', r'\1.', text)
return text
'''
def japanese_cleaners3(text):
global orig
orig = text # saving the original unmodifed text for future use
text = japanese_to_ipa2(text)
if '' in text:
text = text.replace('','')
if "<<" in text or ">>" in text or "¡" in text or "¿" in text:
text = text.replace("<<","«")
text = text.replace(">>","»")
text = text.replace("!","¡")
text = text.replace("?","¿")
if'"'in text:
text = text.replace('"','”')
if'--'in text:
text = text.replace('--','—')
text = text.replace("#","ʔ")
text = text.replace("^","")
text = text.replace("kj","kʲ")
text = text.replace("kj","kʲ")
text = text.replace("ɾj","ɾʲ")
text = text.replace("mj","mʲ")
text = text.replace("ʃ","ɕ")
text = text.replace("*","")
text = text.replace("bj","bʲ")
text = text.replace("h","ç")
text = text.replace("gj","gʲ")
return text
def japanese_cleaners4(text):
text = japanese_cleaners3(text)
if "にゃ" in orig:
text = text.replace("na","nʲa")
elif "にゅ" in orig:
text = text.replace("n","nʲ")
elif "にょ" in orig:
text = text.replace("n","nʲ")
elif "にぃ" in orig:
text = text.replace("ni i","niː")
elif "いゃ" in orig:
text = text.replace("i↑ja","ja")
elif "いゃ" in orig:
text = text.replace("i↑ja","ja")
elif "ひょ" in orig:
text = text.replace("ço","çʲo")
elif "しょ" in orig:
text = text.replace("ɕo","ɕʲo")
text = text.replace("Q","ʔ")
text = text.replace("N","ɴ")
text = re.sub(r'.ʔ', 'ʔ', text)
text = text.replace('" ', '"')
text = text.replace('” ', '”')
return text
to_mel = torchaudio.transforms.MelSpectrogram(
n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
mean, std = -4, 4
def length_to_mask(lengths):
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
mask = torch.gt(mask+1, lengths.unsqueeze(1))
return mask
def preprocess(wave):
wave_tensor = torch.from_numpy(wave).float()
mel_tensor = to_mel(wave_tensor)
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
return mel_tensor
def compute_style(path):
wave, sr = librosa.load(path, sr=24000)
audio, index = librosa.effects.trim(wave, top_db=30)
if sr != 24000:
audio = librosa.resample(audio, sr, 24000)
mel_tensor = preprocess(audio).to(device)
with torch.no_grad():
ref_s = model.style_encoder(mel_tensor.unsqueeze(1))
ref_p = model.predictor_encoder(mel_tensor.unsqueeze(1))
return torch.cat([ref_s, ref_p], dim=1)
device = 'cpu'
if torch.cuda.is_available():
device = 'cuda'
elif torch.backends.mps.is_available():
print("MPS would be available but cannot be used rn")
# device = 'mps'
import phonemizer
global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True)
# phonemizer = Phonemizer.from_checkpoint(str(cached_path('https://public-asai-dl-models.s3.eu-central-1.amazonaws.com/DeepPhonemizer/en_us_cmudict_ipa_forward.pt')))
# config = yaml.safe_load(open("Models/LibriTTS/config.yml"))
config = yaml.safe_load(open(str(cached_path('hf://yl4579/StyleTTS2-LJSpeech/Models/LJSpeech/config.yml'))))
# load pretrained ASR model
ASR_config = config.get('ASR_config', False)
ASR_path = config.get('ASR_path', False)
text_aligner = load_ASR_models(ASR_path, ASR_config)
# load pretrained F0 model
F0_path = config.get('F0_path', False)
pitch_extractor = load_F0_models(F0_path)
# load BERT model
from Utils.PLBERT.util import load_plbert
BERT_path = config.get('PLBERT_dir', False)
plbert = load_plbert(BERT_path)
model_params = recursive_munch(config['model_params'])
model = build_model(model_params, text_aligner, pitch_extractor, plbert)
_ = [model[key].eval() for key in model]
_ = [model[key].to(device) for key in model]
# params_whole = torch.load("Models/LibriTTS/epochs_2nd_00020.pth", map_location='cpu')
params_whole = torch.load("Models/epoch_2nd_00046_NO_SLM.pth", map_location='cpu')
params = params_whole['net']
for key in model:
if key in params:
print('%s loaded' % key)
try:
model[key].load_state_dict(params[key])
except:
from collections import OrderedDict
state_dict = params[key]
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
# load params
model[key].load_state_dict(new_state_dict, strict=False)
# except:
# _load(params[key], model[key])
_ = [model[key].eval() for key in model]
from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule
sampler = DiffusionSampler(
model.diffusion.diffusion,
sampler=ADPM2Sampler(),
sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=0.68, rho=4.6), # empirical parameters
clamp=False
)
def inference(text, ref_s, alpha = 0.3, beta = 0.7, diffusion_steps=5, embedding_scale=1, use_gruut=False):
# text = text.strip()
# ps = global_phonemizer.phonemize([text])
# ps = word_tokenize(ps[0])
# ps = ' '.join(ps)
text = japanese_cleaners4(text)
print(text)
tokens = textclenaer(text)
tokens.insert(0, 0)
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
with torch.no_grad():
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
text_mask = length_to_mask(input_lengths).to(device)
t_en = model.text_encoder(tokens, input_lengths, text_mask)
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
s_pred = sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(device),
embedding=bert_dur,
embedding_scale=embedding_scale,
features=ref_s, # reference from the same speaker as the embedding
num_steps=diffusion_steps).squeeze(1)
s = s_pred[:, 128:]
ref = s_pred[:, :128]
ref = alpha * ref + (1 - alpha) * ref_s[:, :128]
s = beta * s + (1 - beta) * ref_s[:, 128:]
d = model.predictor.text_encoder(d_en,
s, input_lengths, text_mask)
x, _ = model.predictor.lstm(d)
duration = model.predictor.duration_proj(x)
duration = torch.sigmoid(duration).sum(axis=-1)
pred_dur = torch.round(duration.squeeze()).clamp(min=1)
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
c_frame = 0
for i in range(pred_aln_trg.size(0)):
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
c_frame += int(pred_dur[i].data)
# encode prosody
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device))
if model_params.decoder.type == "hifigan":
asr_new = torch.zeros_like(en)
asr_new[:, :, 0] = en[:, :, 0]
asr_new[:, :, 1:] = en[:, :, 0:-1]
en = asr_new
F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device))
if model_params.decoder.type == "hifigan":
asr_new = torch.zeros_like(asr)
asr_new[:, :, 0] = asr[:, :, 0]
asr_new[:, :, 1:] = asr[:, :, 0:-1]
asr = asr_new
out = model.decoder(asr,
F0_pred, N_pred, ref.squeeze().unsqueeze(0))
return out.squeeze().cpu().numpy()[..., :-50] # weird pulse at the end of the model, need to be fixed later
def LFinference(text, s_prev, ref_s, alpha = 0.3, beta = 0.7, t = 0.7, diffusion_steps=5, embedding_scale=1, use_gruut=False):
# text = text.strip()
# ps = global_phonemizer.phonemize([text])
# ps = word_tokenize(ps[0])
# ps = ' '.join(ps)
# ps = ps.replace('``', '"')
# ps = ps.replace("''", '"')
text = japanese_cleaners4(text)
print(text)
tokens = textclenaer(text)
tokens.insert(0, 0)
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
with torch.no_grad():
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
text_mask = length_to_mask(input_lengths).to(device)
t_en = model.text_encoder(tokens, input_lengths, text_mask)
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
s_pred = sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(device),
embedding=bert_dur,
embedding_scale=embedding_scale,
features=ref_s, # reference from the same speaker as the embedding
num_steps=diffusion_steps).squeeze(1)
if s_prev is not None:
# convex combination of previous and current style
s_pred = t * s_prev + (1 - t) * s_pred
s = s_pred[:, 128:]
ref = s_pred[:, :128]
ref = alpha * ref + (1 - alpha) * ref_s[:, :128]
s = beta * s + (1 - beta) * ref_s[:, 128:]
s_pred = torch.cat([ref, s], dim=-1)
d = model.predictor.text_encoder(d_en,
s, input_lengths, text_mask)
x, _ = model.predictor.lstm(d)
duration = model.predictor.duration_proj(x)
duration = torch.sigmoid(duration).sum(axis=-1)
pred_dur = torch.round(duration.squeeze()).clamp(min=1)
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
c_frame = 0
for i in range(pred_aln_trg.size(0)):
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
c_frame += int(pred_dur[i].data)
# encode prosody
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device))
if model_params.decoder.type == "hifigan":
asr_new = torch.zeros_like(en)
asr_new[:, :, 0] = en[:, :, 0]
asr_new[:, :, 1:] = en[:, :, 0:-1]
en = asr_new
F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device))
if model_params.decoder.type == "hifigan":
asr_new = torch.zeros_like(asr)
asr_new[:, :, 0] = asr[:, :, 0]
asr_new[:, :, 1:] = asr[:, :, 0:-1]
asr = asr_new
out = model.decoder(asr,
F0_pred, N_pred, ref.squeeze().unsqueeze(0))
return out.squeeze().cpu().numpy()[..., :-100], s_pred # weird pulse at the end of the model, need to be fixed later
def STinference(text, ref_s, ref_text, alpha = 0.3, beta = 0.7, diffusion_steps=5, embedding_scale=1, use_gruut=False):
print("don't use")
# text = text.strip()
# ps = global_phonemizer.phonemize([text])
# ps = word_tokenize(ps[0])
# ps = ' '.join(ps)
text = japanese_cleaners4(text)
tokens = textclenaer(text)
tokens.insert(0, 0)
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
ref_text = ref_text.strip()
ps = global_phonemizer.phonemize([ref_text])
ps = word_tokenize(ps[0])
ps = ' '.join(ps)
ref_tokens = textclenaer(ps)
ref_tokens.insert(0, 0)
ref_tokens = torch.LongTensor(ref_tokens).to(device).unsqueeze(0)
with torch.no_grad():
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
text_mask = length_to_mask(input_lengths).to(device)
t_en = model.text_encoder(tokens, input_lengths, text_mask)
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
ref_input_lengths = torch.LongTensor([ref_tokens.shape[-1]]).to(device)
ref_text_mask = length_to_mask(ref_input_lengths).to(device)
ref_bert_dur = model.bert(ref_tokens, attention_mask=(~ref_text_mask).int())
s_pred = sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(device),
embedding=bert_dur,
embedding_scale=embedding_scale,
features=ref_s, # reference from the same speaker as the embedding
num_steps=diffusion_steps).squeeze(1)
s = s_pred[:, 128:]
ref = s_pred[:, :128]
ref = alpha * ref + (1 - alpha) * ref_s[:, :128]
s = beta * s + (1 - beta) * ref_s[:, 128:]
d = model.predictor.text_encoder(d_en,
s, input_lengths, text_mask)
x, _ = model.predictor.lstm(d)
duration = model.predictor.duration_proj(x)
duration = torch.sigmoid(duration).sum(axis=-1)
pred_dur = torch.round(duration.squeeze()).clamp(min=1)
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
c_frame = 0
for i in range(pred_aln_trg.size(0)):
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
c_frame += int(pred_dur[i].data)
# encode prosody
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device))
if model_params.decoder.type == "hifigan":
asr_new = torch.zeros_like(en)
asr_new[:, :, 0] = en[:, :, 0]
asr_new[:, :, 1:] = en[:, :, 0:-1]
en = asr_new
F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device))
if model_params.decoder.type == "hifigan":
asr_new = torch.zeros_like(asr)
asr_new[:, :, 0] = asr[:, :, 0]
asr_new[:, :, 1:] = asr[:, :, 0:-1]
asr = asr_new
out = model.decoder(asr,
F0_pred, N_pred, ref.squeeze().unsqueeze(0))
return out.squeeze().cpu().numpy()[..., :-50] # weird pulse at the end of the model, need to be fixed later |