File size: 1,359 Bytes
faa4e89
08a4b41
faa4e89
 
08a4b41
 
 
 
 
c3f04b2
08a4b41
 
2de27a6
aab947d
08a4b41
 
0a9726b
ee1c28b
08a4b41
 
 
 
37546e6
eb0b467
2de27a6
eb0b467
 
08a4b41
 
 
027f906
08a4b41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bfb2a1
08a4b41
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from gradio_client import Client, file
import gradio as gr
import time 
import concurrent

client = Client("Renecto/parallel_en2fr")

def fetch_result(ens):
    result = client.predict(
		ens=ens,
		api_name="/ens2frs"
    )
    print(result["data"])
    return result["data"]

def ens2frs(ens1, ens2, ens3):
    acum = 0
    start_total = time.time()
    tasks = [ens1, ens2, ens3]
    with concurrent.futures.ThreadPoolExecutor() as executor:
        results = list(executor.map(fetch_result, tasks))
    frs = []
    for result in results:
        for r in result:
            frs.append([r[0], r[1]])    
            print(f"Result:{r[0]}, Time taken: {r[1]} seconds")
            acum += r[1]

    end_total = time.time()
    duration_total = end_total - start_total
    print(f"total time:  {duration_total} seconds")
    print(f"acum time:  {acum:.2f} seconds")
    print(f"Efficiency:  {acum/duration_total*100:.1f} %")
    return frs
    

with gr.Blocks() as app:
    ens1 = gr.TextArea(
           """love
book
world
wide""")
    ens2 = gr.TextArea(
           """hate
television
local
narrow""")
    ens3 = gr.TextArea(
           """neutral
radio
urban
normal""")
    button1 = gr.Button("↓en2fr")
    output = gr.Dataframe(label="result")

    button1.click(ens2frs, inputs=[ens1,ens2,ens3], outputs=output)

app.launch(debug=True, share=True)