File size: 17,168 Bytes
13eb4ae
 
cb7f5d0
9a2b6d1
 
4468500
 
9a2b6d1
cb7f5d0
c6b98ce
9a2b6d1
 
 
13eb4ae
 
 
 
 
 
 
9a2b6d1
 
 
 
 
 
 
 
 
 
13eb4ae
 
 
 
 
910e999
 
 
 
 
58d7f44
 
 
13eb4ae
910e999
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13eb4ae
910e999
13eb4ae
 
910e999
 
 
cb7f5d0
 
910e999
cb7f5d0
 
910e999
 
 
 
4468500
cb7f5d0
 
910e999
 
 
cb7f5d0
910e999
 
 
 
cb7f5d0
910e999
 
 
 
cb7f5d0
910e999
cb7f5d0
 
 
910e999
 
cb7f5d0
 
 
4468500
 
cb7f5d0
13eb4ae
cb7f5d0
13eb4ae
910e999
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a2b6d1
13eb4ae
c6b98ce
 
 
 
 
 
9a2b6d1
 
a6f09f7
 
 
9a2b6d1
 
 
 
c6b98ce
 
13eb4ae
 
9a2b6d1
c6b98ce
9a2b6d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf1c3fd
9a2b6d1
bf1c3fd
9a2b6d1
bf1c3fd
9a2b6d1
 
 
bf1c3fd
9a2b6d1
 
 
bf1c3fd
9a2b6d1
 
13eb4ae
9a2b6d1
 
 
0fce010
a6f09f7
9a2b6d1
 
 
0fce010
fb0d2bd
0fce010
9ba1e92
9a2b6d1
bf1c3fd
9a2b6d1
 
 
 
 
 
0fce010
 
 
 
 
 
 
 
9a2b6d1
 
82635ac
9a2b6d1
 
 
82635ac
9a2b6d1
 
 
 
 
 
 
 
 
82635ac
9a2b6d1
82635ac
9a2b6d1
 
 
 
82635ac
9a2b6d1
 
 
82635ac
9a2b6d1
 
 
 
 
 
 
 
82635ac
 
9a2b6d1
 
 
 
 
 
 
 
 
 
 
 
13eb4ae
cb7f5d0
 
c6b98ce
cb7f5d0
 
 
 
13eb4ae
cb7f5d0
 
 
82635ac
cb7f5d0
9a2b6d1
 
 
82635ac
cb7f5d0
 
 
 
 
 
9a2b6d1
13eb4ae
cb7f5d0
 
 
910e999
 
 
 
 
cb7f5d0
910e999
 
 
 
cb7f5d0
 
 
 
 
 
 
910e999
 
 
 
9a2b6d1
910e999
 
 
cb7f5d0
13eb4ae
cb7f5d0
c6b98ce
13eb4ae
 
 
 
 
 
cb7f5d0
 
4468500
cb7f5d0
910e999
cb7f5d0
4468500
 
 
 
13eb4ae
 
910e999
 
 
 
 
 
13eb4ae
 
910e999
4468500
cb7f5d0
13eb4ae
 
 
 
 
c6b98ce
910e999
 
 
 
 
 
13eb4ae
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
import os
import gradio as gr
import time
import math
import logging
import matplotlib.pyplot as plt
import numpy as np
# from lib.mock_tts import MockTTSModel
from lib import format_audio_output
from lib.ui_content import header_html, demo_text_info
from lib.book_utils import get_available_books, get_book_info, get_chapter_text
from lib.text_utils import count_tokens
from tts_model import TTSModel

# Set HF_HOME for faster restarts with cached models/voices
os.environ["HF_HOME"] = "/data/.huggingface"

# Create TTS model instance
model = TTSModel()

# Configure logging
logging.basicConfig(level=logging.DEBUG)
# Suppress matplotlib debug messages
logging.getLogger('matplotlib').setLevel(logging.WARNING)
logger = logging.getLogger(__name__)
logger.debug("Starting app initialization...")


model = TTSModel()

def initialize_model():
    """Initialize model and get voices"""
    if model.model is None:
        if not model.initialize():
            raise gr.Error("Failed to initialize model")
    
    voices = model.list_voices()
    if not voices:
        raise gr.Error("No voices found. Please check the voices directory.")
        
    default_voice = 'af_sky' if 'af_sky' in voices else voices[0] if voices else None
    
    return gr.update(choices=voices, value=default_voice)

def update_progress(chunk_num, total_chunks, tokens_per_sec, rtf, progress_state, start_time, gpu_timeout, progress):
    # Calculate time metrics
    elapsed = time.time() - start_time
    gpu_time_left = max(0, gpu_timeout - elapsed)
    
    # Calculate chunk time more accurately
    prev_total_time = sum(progress_state["chunk_times"]) if progress_state["chunk_times"] else 0
    chunk_time = elapsed - prev_total_time
    
    # Validate metrics before adding to state
    if chunk_time > 0 and tokens_per_sec >= 0:
        # Update progress state with validated metrics
        progress_state["progress"] = chunk_num / total_chunks
        progress_state["total_chunks"] = total_chunks
        progress_state["gpu_time_left"] = gpu_time_left
        progress_state["tokens_per_sec"].append(float(tokens_per_sec))
        progress_state["rtf"].append(float(rtf))
        progress_state["chunk_times"].append(chunk_time)
    
    # Only update progress display during processing
    progress(progress_state["progress"], desc=f"Processing chunk {chunk_num}/{total_chunks} | GPU Time Left: {int(gpu_time_left)}s")

def generate_speech_from_ui(text, voice_names, speed, gpu_timeout, progress=gr.Progress(track_tqdm=False)):
    """Handle text-to-speech generation from the Gradio UI"""
    try:
        if not text or not voice_names:
            raise gr.Error("Please enter text and select at least one voice")
            
        start_time = time.time()
        
        # Create progress state with explicit type initialization
        progress_state = {
            "progress": 0.0,
            "tokens_per_sec": [],  # Initialize as empty list
            "rtf": [],  # Initialize as empty list
            "chunk_times": [],  # Initialize as empty list
            "gpu_time_left": float(gpu_timeout),  # Ensure float
            "total_chunks": 0
        }
        
        # Handle single or multiple voices
        if isinstance(voice_names, str):
            voice_names = [voice_names]
        
        # Generate speech with progress tracking using combined voice
        audio_array, duration, metrics = model.generate_speech(
            text,
            voice_names,
            speed,
            gpu_timeout=gpu_timeout,
            progress_callback=update_progress,
            progress_state=progress_state,
            progress=progress
        )
    
        # Format output for Gradio
        audio_output, duration_text = format_audio_output(audio_array)
        
        # Create plot and metrics text outside GPU context
        fig, metrics_text = create_performance_plot(metrics, voice_names)
        
        return (
            audio_output,
            fig,
            metrics_text
        )
    except Exception as e:
        raise gr.Error(f"Generation failed: {str(e)}")

def create_performance_plot(metrics, voice_names):
    """Create performance plot and metrics text from generation metrics"""
    # Clean and process the data
    tokens_per_sec = np.array(metrics["tokens_per_sec"])
    rtf_values = np.array(metrics["rtf"])
    
    # Calculate statistics using cleaned data
    median_tps = float(np.median(tokens_per_sec))
    mean_tps = float(np.mean(tokens_per_sec))
    std_tps = float(np.std(tokens_per_sec))
    
    # Set y-axis limits based on data range
    y_min = max(0, np.min(tokens_per_sec) * 0.9)
    y_max = np.max(tokens_per_sec) * 1.1
    
    # Create plot
    fig, ax = plt.subplots(figsize=(10, 5))
    fig.patch.set_facecolor('black')
    ax.set_facecolor('black')
    
    # Plot data points
    chunk_nums = list(range(1, len(tokens_per_sec) + 1))
    
    # Plot data points
    ax.bar(chunk_nums, tokens_per_sec, color='#ff2a6d', alpha=0.6)
    
    # Set y-axis limits with padding
    padding = 0.1 * (y_max - y_min)
    ax.set_ylim(max(0, y_min - padding), y_max + padding)
    
    # Add median line
    ax.axhline(y=median_tps, color='#05d9e8', linestyle='--', 
              label=f'Median: {median_tps:.1f} tokens/sec')
    
    # Style improvements
    ax.set_xlabel('Chunk Number', fontsize=24, labelpad=20, color='white')
    ax.set_ylabel('Tokens per Second', fontsize=24, labelpad=20, color='white')
    ax.set_title('Processing Speed by Chunk', fontsize=28, pad=30, color='white')
    ax.tick_params(axis='both', which='major', labelsize=20, colors='white')
    ax.spines['bottom'].set_color('white')
    ax.spines['top'].set_color('white')
    ax.spines['left'].set_color('white')
    ax.spines['right'].set_color('white')
    ax.grid(False)
    ax.legend(fontsize=20, facecolor='black', edgecolor='#05d9e8', loc='lower left', 
             labelcolor='white')
    
    plt.tight_layout()
    
    # Calculate average RTF from individual chunk RTFs
    rtf = np.mean(rtf_values)
    
    # Prepare metrics text
    metrics_text = (
        f"Median Speed: {median_tps:.1f} tokens/sec (o200k_base)\n" +
        f"Real-time Factor: {rtf:.3f}\n" +
        f"Real Time Speed: {int(1/rtf)}x\n" +
        f"Processing Time: {int(metrics['total_time'])}s\n" +
        f"Total Tokens: {metrics['total_tokens']} (o200k_base)\n" +
        f"Voices: {', '.join(voice_names)}"
    )
    
    return fig, metrics_text


# Create Gradio interface
with gr.Blocks(title="Kokoro TTS Demo", css="""
    .equal-height {
        min-height: 400px;
        display: flex;
        flex-direction: column;
    }
    .token-label {
        font-size: 1rem;
        margin-bottom: 0.3rem;
        text-align: center;
        padding: 0.2rem 0;
    }
    .token-count {
        color: #4169e1;
    }
""") as demo:
    gr.HTML(header_html)
    
    with gr.Row():
        # Column 1: Text Input and Book Selection
        with gr.Column(elem_classes="equal-height"):
            # Book selection
            books = get_available_books()
            book_dropdown = gr.Dropdown(
                label="Select Book",
                choices=[book['label'] for book in books],
                value=books[0]['label'] if books else None,
                type="value",
                allow_custom_value=True
            )
            
            # Initialize chapters for first book
            initial_book = books[0]['value'] if books else None
            initial_chapters = []
            if initial_book:
                book_path = os.path.join("texts/processed", initial_book)
                _, chapters = get_book_info(book_path)
                initial_chapters = [ch['title'] for ch in chapters]
            
            # Chapter selection with initial chapters
            chapter_dropdown = gr.Dropdown(
                label="Select Chapter",
                choices=initial_chapters,
                value=initial_chapters[0] if initial_chapters else None,
                type="value",
                allow_custom_value=True
            )
            lab_tps = 175
            lab_rts = 50
            # Text input area with initial chapter text
            initial_text = ""
            if initial_chapters and initial_book:
                book_path = os.path.join("texts/processed", initial_book)
                _, chapters = get_book_info(book_path)
                if chapters:
                    initial_text = get_chapter_text(book_path, chapters[0]['id'])
                    tokens = count_tokens(initial_text)
                    time_estimate = math.ceil(tokens / lab_tps)
                    output_estimate = (time_estimate * lab_rts)//60
                    initial_label = f'<div class="token-label"><span class="token-count">Estimated {output_estimate} minutes in ~{time_estimate}s</span></div>'
                else:
                    initial_label = '<div class="token-label"></div>'
            else:
                initial_label = '<div class="token-label"></div>'
            
            def update_text_label(text):
                if not text:
                    return '<div class="token-label"></div>'
                tokens = count_tokens(text)
                time_estimate = math.ceil(tokens / lab_tps)
                output_estimate = (time_estimate * lab_rts)//60 
                return  f'<div class="token-label"><span class="token-count">Estimated {output_estimate} minutes in ~{time_estimate}s</span></div>'

            
            text_input = gr.TextArea(
                label=None,
                placeholder="Enter text here, select a chapter, or upload a .txt file",
                value=initial_text,
                lines=8,
                max_lines=14,
                show_label=False,
                show_copy_button=True  # Add copy button for convenience
            )
            
            clear_btn = gr.Button("Clear Text", variant="secondary")
            label_html = gr.HTML(initial_label)
            
            def clear_text():
                return "", '<div class="token-label"></div>'
            
            clear_btn.click(
                fn=clear_text,
                outputs=[text_input, label_html]
            )
            
            # Update label whenever text changes
            text_input.change(
                fn=update_text_label,
                inputs=[text_input],
                outputs=[label_html],
                trigger_mode="always_last"
            )
            
            def update_chapters(book_name):
                if not book_name:
                    return gr.update(choices=[], value=None), "", '<div class="token-label"></div>'
                # Find the corresponding book file
                book_file = next((book['value'] for book in books if book['label'] == book_name), None)
                if not book_file:
                    return gr.update(choices=[], value=None), "", '<div class="token-label"></div>'
                book_path = os.path.join("texts/processed", book_file)
                book_title, chapters = get_book_info(book_path)
                # Create simple choices list of chapter titles
                chapter_choices = [ch['title'] for ch in chapters]
                # Set initial chapter text when book is selected
                initial_text = get_chapter_text(book_path, chapters[0]['id']) if chapters else ""
                if initial_text:
                    tokens = count_tokens(initial_text)
                    time_estimate = math.ceil(tokens / 150 / 10) * 10
                    label = f'<div class="token-label"><span class="token-count">({tokens} tokens, ~{time_estimate}s generation time)</span></div>'
                else:
                    label = '<div class="token-label"></div>'
                return gr.update(choices=chapter_choices, value=chapter_choices[0] if chapter_choices else None), initial_text, label
            
            def load_chapter_text(book_name, chapter_title):
                if not book_name or not chapter_title:
                    return "", '<div class="token-label"></div>'
                # Find the corresponding book file
                book_file = next((book['value'] for book in books if book['label'] == book_name), None)
                if not book_file:
                    return "", '<div class="token-label"></div>'
                book_path = os.path.join("texts/processed", book_file)
                # Get all chapters and find the one matching the title
                _, chapters = get_book_info(book_path)
                for ch in chapters:
                    if ch['title'] == chapter_title:
                        text = get_chapter_text(book_path, ch['id'])
                        tokens = count_tokens(text)
                        time_estimate = math.ceil(tokens / 150 / 10) * 10
                        return text, f'<div class="token-label"> <span class="token-count">({tokens} tokens, ~{time_estimate}s generation time)</span></div>'
                return "", '<div class="token-label"></div>'
            
            # Set up event handlers for book/chapter selection
            book_dropdown.change(
                fn=update_chapters,
                inputs=[book_dropdown],
                outputs=[chapter_dropdown, text_input, label_html]
            )
            
            chapter_dropdown.change(
                fn=load_chapter_text,
                inputs=[book_dropdown, chapter_dropdown],
                outputs=[text_input, label_html]
            )
        
        # Column 2: Controls
        with gr.Column(elem_classes="equal-height"):
            file_input = gr.File(
                label="Upload .txt file",
                file_types=[".txt"],
                type="binary"
            )
            
            def load_text_from_file(file_bytes):
                if file_bytes is None:
                    return None, '<div class="token-label"></div>'
                try:
                    text = file_bytes.decode('utf-8')
                    tokens = count_tokens(text)
                    time_estimate = math.ceil(tokens / 150 / 10) * 10  # Round up to nearest 10 seconds
                    return text, f'<div class="token-label"><span class="token-count">({tokens} tokens, ~{time_estimate}s generation time)</span></div>'
                except Exception as e:
                    raise gr.Error(f"Failed to read file: {str(e)}")

            file_input.change(
                fn=load_text_from_file,
                inputs=[file_input],
                outputs=[text_input, label_html]
            )
            
            with gr.Group():
                voice_dropdown = gr.Dropdown(
                    label="Voice(s)",
                    choices=[],  # Start empty, will be populated after initialization
                    value=None,
                    allow_custom_value=True,
                    multiselect=True
                )
                
                # Add refresh button to manually update voice list
                refresh_btn = gr.Button("🔄 Refresh Voices", size="sm")
                
                speed_slider = gr.Slider(
                    label="Speed",
                    minimum=0.5,
                    maximum=2.0,
                    value=1.0,
                    step=0.1
                )
                gpu_timeout_slider = gr.Slider(
                    label="GPU Timeout (seconds)",
                    minimum=15,
                    maximum=120,
                    value=90,
                    step=1,
                    info="Maximum time allowed for GPU processing"
                )
                submit_btn = gr.Button("Generate Speech", variant="primary")
        
        # Column 3: Output
        with gr.Column(elem_classes="equal-height"):
            audio_output = gr.Audio(
                label="Generated Speech",
                type="numpy",
                format="wav",
                autoplay=False
            )
            progress_bar = gr.Progress(track_tqdm=False)
            metrics_text = gr.Textbox(
                label="Performance Summary",
                interactive=False,
                lines=5
            )
            metrics_plot = gr.Plot(
                label="Processing Metrics",
                show_label=True,
                format="png"  # Explicitly set format to PNG which is supported by matplotlib
            )
    
    # Set up event handlers
    refresh_btn.click(
        fn=initialize_model,
        outputs=[voice_dropdown]
    )
    
    submit_btn.click(
        fn=generate_speech_from_ui,
        inputs=[text_input, voice_dropdown, speed_slider, gpu_timeout_slider],
        outputs=[audio_output, metrics_plot, metrics_text],
        show_progress=True
    )
    
    # Add text analysis info
    with gr.Row():
        with gr.Column():
            gr.Markdown(demo_text_info)
    
    # Initialize voices on load
    demo.load(
        fn=initialize_model,
        outputs=[voice_dropdown]
    )

# Launch the app
if __name__ == "__main__":
    demo.launch()