Spaces:
Running
Running
File size: 10,318 Bytes
e84a10b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import time
import torch
from transformers import T5ForConditionalGeneration,T5Tokenizer
import random
import spacy
import zipfile
import os
import json
from sense2vec import Sense2Vec
import requests
from collections import OrderedDict
import string
import pke
import nltk
from nltk import FreqDist
nltk.download('brown')
nltk.download('stopwords')
nltk.download('popular')
from nltk.corpus import stopwords
from nltk.corpus import brown
from similarity.normalized_levenshtein import NormalizedLevenshtein
from nltk.tokenize import sent_tokenize
from flashtext import KeywordProcessor
def MCQs_available(word,s2v):
word = word.replace(" ", "_")
sense = s2v.get_best_sense(word)
if sense is not None:
return True
else:
return False
def edits(word):
"All edits that are one edit away from `word`."
letters = 'abcdefghijklmnopqrstuvwxyz '+string.punctuation
splits = [(word[:i], word[i:]) for i in range(len(word) + 1)]
deletes = [L + R[1:] for L, R in splits if R]
transposes = [L + R[1] + R[0] + R[2:] for L, R in splits if len(R)>1]
replaces = [L + c + R[1:] for L, R in splits if R for c in letters]
inserts = [L + c + R for L, R in splits for c in letters]
return set(deletes + transposes + replaces + inserts)
def sense2vec_get_words(word,s2v):
output = []
word_preprocessed = word.translate(word.maketrans("","", string.punctuation))
word_preprocessed = word_preprocessed.lower()
word_edits = edits(word_preprocessed)
word = word.replace(" ", "_")
sense = s2v.get_best_sense(word)
most_similar = s2v.most_similar(sense, n=15)
compare_list = [word_preprocessed]
for each_word in most_similar:
append_word = each_word[0].split("|")[0].replace("_", " ")
append_word = append_word.strip()
append_word_processed = append_word.lower()
append_word_processed = append_word_processed.translate(append_word_processed.maketrans("","", string.punctuation))
if append_word_processed not in compare_list and word_preprocessed not in append_word_processed and append_word_processed not in word_edits:
output.append(append_word.title())
compare_list.append(append_word_processed)
out = list(OrderedDict.fromkeys(output))
return out
def get_options(answer,s2v):
distractors =[]
try:
distractors = sense2vec_get_words(answer,s2v)
if len(distractors) > 0:
print(" Sense2vec_distractors successful for word : ", answer)
return distractors,"sense2vec"
except:
print (" Sense2vec_distractors failed for word : ",answer)
return distractors,"None"
def tokenize_sentences(text):
sentences = [sent_tokenize(text)]
sentences = [y for x in sentences for y in x]
# Remove any short sentences less than 20 letters.
sentences = [sentence.strip() for sentence in sentences if len(sentence) > 20]
return sentences
def get_sentences_for_keyword(keywords, sentences):
keyword_processor = KeywordProcessor()
keyword_sentences = {}
for word in keywords:
word = word.strip()
keyword_sentences[word] = []
keyword_processor.add_keyword(word)
for sentence in sentences:
keywords_found = keyword_processor.extract_keywords(sentence)
for key in keywords_found:
keyword_sentences[key].append(sentence)
for key in keyword_sentences.keys():
values = keyword_sentences[key]
values = sorted(values, key=len, reverse=True)
keyword_sentences[key] = values
delete_keys = []
for k in keyword_sentences.keys():
if len(keyword_sentences[k]) == 0:
delete_keys.append(k)
for del_key in delete_keys:
del keyword_sentences[del_key]
return keyword_sentences
def is_far(words_list,currentword,thresh,normalized_levenshtein):
threshold = thresh
score_list =[]
for word in words_list:
score_list.append(normalized_levenshtein.distance(word.lower(),currentword.lower()))
if min(score_list)>=threshold:
return True
else:
return False
def filter_phrases(phrase_keys,max,normalized_levenshtein ):
filtered_phrases =[]
if len(phrase_keys)>0:
filtered_phrases.append(phrase_keys[0])
for ph in phrase_keys[1:]:
if is_far(filtered_phrases,ph,0.7,normalized_levenshtein ):
filtered_phrases.append(ph)
if len(filtered_phrases)>=max:
break
return filtered_phrases
def get_nouns_multipartite(text):
out = []
extractor = pke.unsupervised.MultipartiteRank()
extractor.load_document(input=text, language='en')
pos = {'PROPN', 'NOUN'}
stoplist = list(string.punctuation)
stoplist += stopwords.words('english')
extractor.candidate_selection(pos=pos)
# 4. build the Multipartite graph and rank candidates using random walk,
# alpha controls the weight adjustment mechanism, see TopicRank for
# threshold/method parameters.
try:
extractor.candidate_weighting(alpha=1.1,
threshold=0.75,
method='average')
except:
return out
keyphrases = extractor.get_n_best(n=10)
for key in keyphrases:
out.append(key[0])
return out
def get_phrases(doc):
phrases={}
for np in doc.noun_chunks:
phrase =np.text
len_phrase = len(phrase.split())
if len_phrase > 1:
if phrase not in phrases:
phrases[phrase]=1
else:
phrases[phrase]=phrases[phrase]+1
phrase_keys=list(phrases.keys())
phrase_keys = sorted(phrase_keys, key= lambda x: len(x),reverse=True)
phrase_keys=phrase_keys[:50]
return phrase_keys
def get_keywords(nlp,text,max_keywords,s2v,fdist,normalized_levenshtein,no_of_sentences):
doc = nlp(text)
max_keywords = int(max_keywords)
keywords = get_nouns_multipartite(text)
keywords = sorted(keywords, key=lambda x: fdist[x])
keywords = filter_phrases(keywords, max_keywords,normalized_levenshtein )
phrase_keys = get_phrases(doc)
filtered_phrases = filter_phrases(phrase_keys, max_keywords,normalized_levenshtein )
total_phrases = keywords + filtered_phrases
total_phrases_filtered = filter_phrases(total_phrases, min(max_keywords, 2*no_of_sentences),normalized_levenshtein )
answers = []
for answer in total_phrases_filtered:
if answer not in answers and MCQs_available(answer,s2v):
answers.append(answer)
answers = answers[:max_keywords]
return answers
def generate_questions_mcq(keyword_sent_mapping,device,tokenizer,model,sense2vec,normalized_levenshtein):
batch_text = []
answers = keyword_sent_mapping.keys()
for answer in answers:
txt = keyword_sent_mapping[answer]
context = "context: " + txt
text = context + " " + "answer: " + answer + " </s>"
batch_text.append(text)
encoding = tokenizer.batch_encode_plus(batch_text, pad_to_max_length=True, return_tensors="pt")
print ("Running model for generation")
input_ids, attention_masks = encoding["input_ids"].to(device), encoding["attention_mask"].to(device)
with torch.no_grad():
outs = model.generate(input_ids=input_ids,
attention_mask=attention_masks,
max_length=150)
output_array ={}
output_array["questions"] =[]
# print(outs)
for index, val in enumerate(answers):
individual_question ={}
out = outs[index, :]
dec = tokenizer.decode(out, skip_special_tokens=True, clean_up_tokenization_spaces=True)
Question = dec.replace("question:", "")
Question = Question.strip()
individual_question["question_statement"] = Question
individual_question["question_type"] = "MCQ"
individual_question["answer"] = val
individual_question["id"] = index+1
individual_question["options"], individual_question["options_algorithm"] = get_options(val, sense2vec)
individual_question["options"] = filter_phrases(individual_question["options"], 10,normalized_levenshtein)
index = 3
individual_question["extra_options"]= individual_question["options"][index:]
individual_question["options"] = individual_question["options"][:index]
individual_question["context"] = keyword_sent_mapping[val]
if len(individual_question["options"])>0:
output_array["questions"].append(individual_question)
return output_array
def generate_normal_questions(keyword_sent_mapping,device,tokenizer,model): #for normal one word questions
batch_text = []
answers = keyword_sent_mapping.keys()
for answer in answers:
txt = keyword_sent_mapping[answer]
context = "context: " + txt
text = context + " " + "answer: " + answer + " </s>"
batch_text.append(text)
encoding = tokenizer.batch_encode_plus(batch_text, pad_to_max_length=True, return_tensors="pt")
print ("Running model for generation")
input_ids, attention_masks = encoding["input_ids"].to(device), encoding["attention_mask"].to(device)
with torch.no_grad():
outs = model.generate(input_ids=input_ids,
attention_mask=attention_masks,
max_length=150)
output_array ={}
output_array["questions"] =[]
for index, val in enumerate(answers):
individual_quest= {}
out = outs[index, :]
dec = tokenizer.decode(out, skip_special_tokens=True, clean_up_tokenization_spaces=True)
Question= dec.replace('question:', '')
Question= Question.strip()
individual_quest['Question']= Question
individual_quest['Answer']= val
individual_quest["id"] = index+1
individual_quest["context"] = keyword_sent_mapping[val]
output_array["questions"].append(individual_quest)
return output_array
def random_choice():
a = random.choice([0,1])
return bool(a)
|