Spaces:
Runtime error
Runtime error
File size: 3,020 Bytes
7abd9ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
from basicsr.utils.registry import ARCH_REGISTRY
from torch import nn as nn
from torch.nn import functional as F
from torch.nn.utils import spectral_norm
@ARCH_REGISTRY.register()
class UNetDiscriminatorSN(nn.Module):
"""Defines a U-Net discriminator with spectral normalization (SN)
It is used in Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data.
Arg:
num_in_ch (int): Channel number of inputs. Default: 3.
num_feat (int): Channel number of base intermediate features. Default: 64.
skip_connection (bool): Whether to use skip connections between U-Net. Default: True.
"""
def __init__(self, num_in_ch, num_feat=64, skip_connection=True):
super(UNetDiscriminatorSN, self).__init__()
self.skip_connection = skip_connection
norm = spectral_norm
# the first convolution
self.conv0 = nn.Conv2d(num_in_ch, num_feat, kernel_size=3, stride=1, padding=1)
# downsample
self.conv1 = norm(nn.Conv2d(num_feat, num_feat * 2, 4, 2, 1, bias=False))
self.conv2 = norm(nn.Conv2d(num_feat * 2, num_feat * 4, 4, 2, 1, bias=False))
self.conv3 = norm(nn.Conv2d(num_feat * 4, num_feat * 8, 4, 2, 1, bias=False))
# upsample
self.conv4 = norm(nn.Conv2d(num_feat * 8, num_feat * 4, 3, 1, 1, bias=False))
self.conv5 = norm(nn.Conv2d(num_feat * 4, num_feat * 2, 3, 1, 1, bias=False))
self.conv6 = norm(nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1, bias=False))
# extra convolutions
self.conv7 = norm(nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=False))
self.conv8 = norm(nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=False))
self.conv9 = nn.Conv2d(num_feat, 1, 3, 1, 1)
def forward(self, x):
# downsample
x0 = F.leaky_relu(self.conv0(x), negative_slope=0.2, inplace=True)
x1 = F.leaky_relu(self.conv1(x0), negative_slope=0.2, inplace=True)
x2 = F.leaky_relu(self.conv2(x1), negative_slope=0.2, inplace=True)
x3 = F.leaky_relu(self.conv3(x2), negative_slope=0.2, inplace=True)
# upsample
x3 = F.interpolate(x3, scale_factor=2, mode='bilinear', align_corners=False)
x4 = F.leaky_relu(self.conv4(x3), negative_slope=0.2, inplace=True)
if self.skip_connection:
x4 = x4 + x2
x4 = F.interpolate(x4, scale_factor=2, mode='bilinear', align_corners=False)
x5 = F.leaky_relu(self.conv5(x4), negative_slope=0.2, inplace=True)
if self.skip_connection:
x5 = x5 + x1
x5 = F.interpolate(x5, scale_factor=2, mode='bilinear', align_corners=False)
x6 = F.leaky_relu(self.conv6(x5), negative_slope=0.2, inplace=True)
if self.skip_connection:
x6 = x6 + x0
# extra convolutions
out = F.leaky_relu(self.conv7(x6), negative_slope=0.2, inplace=True)
out = F.leaky_relu(self.conv8(out), negative_slope=0.2, inplace=True)
out = self.conv9(out)
return out
|