File size: 17,626 Bytes
7abd9ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import torch
from torch.autograd import Variable
from collections import OrderedDict
import numpy as np
import os
from PIL import Image
import util.util as util
from .base_model import BaseModel
from . import networks

class UIModel(BaseModel):
    def name(self):
        return 'UIModel'

    def initialize(self, opt):
        assert(not opt.isTrain)
        BaseModel.initialize(self, opt)
        self.use_features = opt.instance_feat or opt.label_feat

        netG_input_nc = opt.label_nc
        if not opt.no_instance:
            netG_input_nc += 1            
        if self.use_features:   
            netG_input_nc += opt.feat_num           

        self.netG = networks.define_G(netG_input_nc, opt.output_nc, opt.ngf, opt.netG, 
                                      opt.n_downsample_global, opt.n_blocks_global, opt.n_local_enhancers, 
                                      opt.n_blocks_local, opt.norm, gpu_ids=self.gpu_ids)            
        self.load_network(self.netG, 'G', opt.which_epoch)

        print('---------- Networks initialized -------------')

    def toTensor(self, img, normalize=False):
        tensor = torch.from_numpy(np.array(img, np.int32, copy=False))
        tensor = tensor.view(1, img.size[1], img.size[0], len(img.mode))    
        tensor = tensor.transpose(1, 2).transpose(1, 3).contiguous()
        if normalize:
            return (tensor.float()/255.0 - 0.5) / 0.5        
        return tensor.float()

    def load_image(self, label_path, inst_path, feat_path):
        opt = self.opt
        # read label map
        label_img = Image.open(label_path)    
        if label_path.find('face') != -1:
            label_img = label_img.convert('L')
        ow, oh = label_img.size    
        w = opt.loadSize
        h = int(w * oh / ow)    
        label_img = label_img.resize((w, h), Image.NEAREST)
        label_map = self.toTensor(label_img)           
        
        # onehot vector input for label map
        self.label_map = label_map.cuda()
        oneHot_size = (1, opt.label_nc, h, w)
        input_label = self.Tensor(torch.Size(oneHot_size)).zero_()
        self.input_label = input_label.scatter_(1, label_map.long().cuda(), 1.0)

        # read instance map
        if not opt.no_instance:
            inst_img = Image.open(inst_path)        
            inst_img = inst_img.resize((w, h), Image.NEAREST)            
            self.inst_map = self.toTensor(inst_img).cuda()
            self.edge_map = self.get_edges(self.inst_map)          
            self.net_input = Variable(torch.cat((self.input_label, self.edge_map), dim=1), volatile=True)
        else:
            self.net_input = Variable(self.input_label, volatile=True)  
        
        self.features_clustered = np.load(feat_path).item()
        self.object_map = self.inst_map if opt.instance_feat else self.label_map 
                       
        object_np = self.object_map.cpu().numpy().astype(int) 
        self.feat_map = self.Tensor(1, opt.feat_num, h, w).zero_()                 
        self.cluster_indices = np.zeros(self.opt.label_nc, np.uint8)
        for i in np.unique(object_np):    
            label = i if i < 1000 else i//1000
            if label in self.features_clustered:
                feat = self.features_clustered[label]
                np.random.seed(i+1)
                cluster_idx = np.random.randint(0, feat.shape[0])
                self.cluster_indices[label] = cluster_idx
                idx = (self.object_map == i).nonzero()                    
                self.set_features(idx, feat, cluster_idx)

        self.net_input_original = self.net_input.clone()        
        self.label_map_original = self.label_map.clone()
        self.feat_map_original = self.feat_map.clone()
        if not opt.no_instance:
            self.inst_map_original = self.inst_map.clone()        

    def reset(self):
        self.net_input = self.net_input_prev = self.net_input_original.clone()        
        self.label_map = self.label_map_prev = self.label_map_original.clone()
        self.feat_map = self.feat_map_prev = self.feat_map_original.clone()
        if not self.opt.no_instance:
            self.inst_map = self.inst_map_prev = self.inst_map_original.clone()
        self.object_map = self.inst_map if self.opt.instance_feat else self.label_map 

    def undo(self):        
        self.net_input = self.net_input_prev
        self.label_map = self.label_map_prev
        self.feat_map = self.feat_map_prev
        if not self.opt.no_instance:
            self.inst_map = self.inst_map_prev
        self.object_map = self.inst_map if self.opt.instance_feat else self.label_map 
            
    # get boundary map from instance map
    def get_edges(self, t):
        edge = torch.cuda.ByteTensor(t.size()).zero_()
        edge[:,:,:,1:] = edge[:,:,:,1:] | (t[:,:,:,1:] != t[:,:,:,:-1])
        edge[:,:,:,:-1] = edge[:,:,:,:-1] | (t[:,:,:,1:] != t[:,:,:,:-1])
        edge[:,:,1:,:] = edge[:,:,1:,:] | (t[:,:,1:,:] != t[:,:,:-1,:])
        edge[:,:,:-1,:] = edge[:,:,:-1,:] | (t[:,:,1:,:] != t[:,:,:-1,:])
        return edge.float()

    # change the label at the source position to the label at the target position
    def change_labels(self, click_src, click_tgt): 
        y_src, x_src = click_src[0], click_src[1]
        y_tgt, x_tgt = click_tgt[0], click_tgt[1]
        label_src = int(self.label_map[0, 0, y_src, x_src])
        inst_src = self.inst_map[0, 0, y_src, x_src]
        label_tgt = int(self.label_map[0, 0, y_tgt, x_tgt])
        inst_tgt = self.inst_map[0, 0, y_tgt, x_tgt]

        idx_src = (self.inst_map == inst_src).nonzero()         
        # need to change 3 things: label map, instance map, and feature map
        if idx_src.shape:
            # backup current maps
            self.backup_current_state() 

            # change both the label map and the network input
            self.label_map[idx_src[:,0], idx_src[:,1], idx_src[:,2], idx_src[:,3]] = label_tgt
            self.net_input[idx_src[:,0], idx_src[:,1] + label_src, idx_src[:,2], idx_src[:,3]] = 0
            self.net_input[idx_src[:,0], idx_src[:,1] + label_tgt, idx_src[:,2], idx_src[:,3]] = 1                                    
            
            # update the instance map (and the network input)
            if inst_tgt > 1000:
                # if different instances have different ids, give the new object a new id
                tgt_indices = (self.inst_map > label_tgt * 1000) & (self.inst_map < (label_tgt+1) * 1000)
                inst_tgt = self.inst_map[tgt_indices].max() + 1
            self.inst_map[idx_src[:,0], idx_src[:,1], idx_src[:,2], idx_src[:,3]] = inst_tgt
            self.net_input[:,-1,:,:] = self.get_edges(self.inst_map)

            # also copy the source features to the target position      
            idx_tgt = (self.inst_map == inst_tgt).nonzero()    
            if idx_tgt.shape:
                self.copy_features(idx_src, idx_tgt[0,:])

        self.fake_image = util.tensor2im(self.single_forward(self.net_input, self.feat_map))

    # add strokes of target label in the image
    def add_strokes(self, click_src, label_tgt, bw, save):
        # get the region of the new strokes (bw is the brush width)        
        size = self.net_input.size()
        h, w = size[2], size[3]
        idx_src = torch.LongTensor(bw**2, 4).fill_(0)
        for i in range(bw):
            idx_src[i*bw:(i+1)*bw, 2] = min(h-1, max(0, click_src[0]-bw//2 + i))
            for j in range(bw):
                idx_src[i*bw+j, 3] = min(w-1, max(0, click_src[1]-bw//2 + j))
        idx_src = idx_src.cuda()
        
        # again, need to update 3 things
        if idx_src.shape:
            # backup current maps
            if save:
                self.backup_current_state()

            # update the label map (and the network input) in the stroke region            
            self.label_map[idx_src[:,0], idx_src[:,1], idx_src[:,2], idx_src[:,3]] = label_tgt
            for k in range(self.opt.label_nc):
                self.net_input[idx_src[:,0], idx_src[:,1] + k, idx_src[:,2], idx_src[:,3]] = 0
            self.net_input[idx_src[:,0], idx_src[:,1] + label_tgt, idx_src[:,2], idx_src[:,3]] = 1                 

            # update the instance map (and the network input)
            self.inst_map[idx_src[:,0], idx_src[:,1], idx_src[:,2], idx_src[:,3]] = label_tgt
            self.net_input[:,-1,:,:] = self.get_edges(self.inst_map)
            
            # also update the features if available
            if self.opt.instance_feat:                                            
                feat = self.features_clustered[label_tgt]
                #np.random.seed(label_tgt+1)   
                #cluster_idx = np.random.randint(0, feat.shape[0])
                cluster_idx = self.cluster_indices[label_tgt]
                self.set_features(idx_src, feat, cluster_idx)                                                  
        
        self.fake_image = util.tensor2im(self.single_forward(self.net_input, self.feat_map))

    # add an object to the clicked position with selected style
    def add_objects(self, click_src, label_tgt, mask, style_id=0):
        y, x = click_src[0], click_src[1]
        mask = np.transpose(mask, (2, 0, 1))[np.newaxis,...]        
        idx_src = torch.from_numpy(mask).cuda().nonzero()        
        idx_src[:,2] += y
        idx_src[:,3] += x

        # backup current maps
        self.backup_current_state()

        # update label map
        self.label_map[idx_src[:,0], idx_src[:,1], idx_src[:,2], idx_src[:,3]] = label_tgt        
        for k in range(self.opt.label_nc):
            self.net_input[idx_src[:,0], idx_src[:,1] + k, idx_src[:,2], idx_src[:,3]] = 0
        self.net_input[idx_src[:,0], idx_src[:,1] + label_tgt, idx_src[:,2], idx_src[:,3]] = 1            

        # update instance map
        self.inst_map[idx_src[:,0], idx_src[:,1], idx_src[:,2], idx_src[:,3]] = label_tgt
        self.net_input[:,-1,:,:] = self.get_edges(self.inst_map)
                
        # update feature map
        self.set_features(idx_src, self.feat, style_id)                
        
        self.fake_image = util.tensor2im(self.single_forward(self.net_input, self.feat_map))

    def single_forward(self, net_input, feat_map):
        net_input = torch.cat((net_input, feat_map), dim=1)
        fake_image = self.netG.forward(net_input)

        if fake_image.size()[0] == 1:
            return fake_image.data[0]        
        return fake_image.data


    # generate all outputs for different styles
    def style_forward(self, click_pt, style_id=-1):           
        if click_pt is None:            
            self.fake_image = util.tensor2im(self.single_forward(self.net_input, self.feat_map))
            self.crop = None
            self.mask = None        
        else:                       
            instToChange = int(self.object_map[0, 0, click_pt[0], click_pt[1]])
            self.instToChange = instToChange
            label = instToChange if instToChange < 1000 else instToChange//1000        
            self.feat = self.features_clustered[label]
            self.fake_image = []
            self.mask = self.object_map == instToChange
            idx = self.mask.nonzero()
            self.get_crop_region(idx)            
            if idx.size():                
                if style_id == -1:
                    (min_y, min_x, max_y, max_x) = self.crop
                    ### original
                    for cluster_idx in range(self.opt.multiple_output):
                        self.set_features(idx, self.feat, cluster_idx)
                        fake_image = self.single_forward(self.net_input, self.feat_map)
                        fake_image = util.tensor2im(fake_image[:,min_y:max_y,min_x:max_x])
                        self.fake_image.append(fake_image)    
                    """### To speed up previewing different style results, either crop or downsample the label maps
                    if instToChange > 1000:
                        (min_y, min_x, max_y, max_x) = self.crop                                                
                        ### crop                                                
                        _, _, h, w = self.net_input.size()
                        offset = 512
                        y_start, x_start = max(0, min_y-offset), max(0, min_x-offset)
                        y_end, x_end = min(h, (max_y + offset)), min(w, (max_x + offset))
                        y_region = slice(y_start, y_start+(y_end-y_start)//16*16)
                        x_region = slice(x_start, x_start+(x_end-x_start)//16*16)
                        net_input = self.net_input[:,:,y_region,x_region]                    
                        for cluster_idx in range(self.opt.multiple_output):  
                            self.set_features(idx, self.feat, cluster_idx)
                            fake_image = self.single_forward(net_input, self.feat_map[:,:,y_region,x_region])                            
                            fake_image = util.tensor2im(fake_image[:,min_y-y_start:max_y-y_start,min_x-x_start:max_x-x_start])
                            self.fake_image.append(fake_image)
                    else:
                        ### downsample
                        (min_y, min_x, max_y, max_x) = [crop//2 for crop in self.crop]                    
                        net_input = self.net_input[:,:,::2,::2]                    
                        size = net_input.size()
                        net_input_batch = net_input.expand(self.opt.multiple_output, size[1], size[2], size[3])             
                        for cluster_idx in range(self.opt.multiple_output):  
                            self.set_features(idx, self.feat, cluster_idx)
                            feat_map = self.feat_map[:,:,::2,::2]
                            if cluster_idx == 0:
                                feat_map_batch = feat_map
                            else:
                                feat_map_batch = torch.cat((feat_map_batch, feat_map), dim=0)
                        fake_image_batch = self.single_forward(net_input_batch, feat_map_batch)
                        for i in range(self.opt.multiple_output):
                            self.fake_image.append(util.tensor2im(fake_image_batch[i,:,min_y:max_y,min_x:max_x]))"""
                                        
                else:
                    self.set_features(idx, self.feat, style_id)
                    self.cluster_indices[label] = style_id
                    self.fake_image = util.tensor2im(self.single_forward(self.net_input, self.feat_map))        

    def backup_current_state(self):
        self.net_input_prev = self.net_input.clone()
        self.label_map_prev = self.label_map.clone() 
        self.inst_map_prev = self.inst_map.clone() 
        self.feat_map_prev = self.feat_map.clone() 

    # crop the ROI and get the mask of the object
    def get_crop_region(self, idx):
        size = self.net_input.size()
        h, w = size[2], size[3]
        min_y, min_x = idx[:,2].min(), idx[:,3].min()
        max_y, max_x = idx[:,2].max(), idx[:,3].max()             
        crop_min = 128
        if max_y - min_y < crop_min:
            min_y = max(0, (max_y + min_y) // 2 - crop_min // 2)
            max_y = min(h-1, min_y + crop_min)
        if max_x - min_x < crop_min:
            min_x = max(0, (max_x + min_x) // 2 - crop_min // 2)
            max_x = min(w-1, min_x + crop_min)
        self.crop = (min_y, min_x, max_y, max_x)           
        self.mask = self.mask[:,:, min_y:max_y, min_x:max_x]

    # update the feature map once a new object is added or the label is changed
    def update_features(self, cluster_idx, mask=None, click_pt=None):        
        self.feat_map_prev = self.feat_map.clone()
        # adding a new object
        if mask is not None:
            y, x = click_pt[0], click_pt[1]
            mask = np.transpose(mask, (2,0,1))[np.newaxis,...]        
            idx = torch.from_numpy(mask).cuda().nonzero()        
            idx[:,2] += y
            idx[:,3] += x    
        # changing the label of an existing object 
        else:            
            idx = (self.object_map == self.instToChange).nonzero()              

        # update feature map
        self.set_features(idx, self.feat, cluster_idx)        

    # set the class features to the target feature
    def set_features(self, idx, feat, cluster_idx):        
        for k in range(self.opt.feat_num):
            self.feat_map[idx[:,0], idx[:,1] + k, idx[:,2], idx[:,3]] = feat[cluster_idx, k] 

    # copy the features at the target position to the source position
    def copy_features(self, idx_src, idx_tgt):        
        for k in range(self.opt.feat_num):
            val = self.feat_map[idx_tgt[0], idx_tgt[1] + k, idx_tgt[2], idx_tgt[3]]
            self.feat_map[idx_src[:,0], idx_src[:,1] + k, idx_src[:,2], idx_src[:,3]] = val 

    def get_current_visuals(self, getLabel=False):                              
        mask = self.mask     
        if self.mask is not None:
            mask = np.transpose(self.mask[0].cpu().float().numpy(), (1,2,0)).astype(np.uint8)        

        dict_list = [('fake_image', self.fake_image), ('mask', mask)]

        if getLabel: # only output label map if needed to save bandwidth
            label = util.tensor2label(self.net_input.data[0], self.opt.label_nc)                    
            dict_list += [('label', label)]

        return OrderedDict(dict_list)