Spaces:
Runtime error
Runtime error
File size: 17,626 Bytes
7abd9ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
import torch
from torch.autograd import Variable
from collections import OrderedDict
import numpy as np
import os
from PIL import Image
import util.util as util
from .base_model import BaseModel
from . import networks
class UIModel(BaseModel):
def name(self):
return 'UIModel'
def initialize(self, opt):
assert(not opt.isTrain)
BaseModel.initialize(self, opt)
self.use_features = opt.instance_feat or opt.label_feat
netG_input_nc = opt.label_nc
if not opt.no_instance:
netG_input_nc += 1
if self.use_features:
netG_input_nc += opt.feat_num
self.netG = networks.define_G(netG_input_nc, opt.output_nc, opt.ngf, opt.netG,
opt.n_downsample_global, opt.n_blocks_global, opt.n_local_enhancers,
opt.n_blocks_local, opt.norm, gpu_ids=self.gpu_ids)
self.load_network(self.netG, 'G', opt.which_epoch)
print('---------- Networks initialized -------------')
def toTensor(self, img, normalize=False):
tensor = torch.from_numpy(np.array(img, np.int32, copy=False))
tensor = tensor.view(1, img.size[1], img.size[0], len(img.mode))
tensor = tensor.transpose(1, 2).transpose(1, 3).contiguous()
if normalize:
return (tensor.float()/255.0 - 0.5) / 0.5
return tensor.float()
def load_image(self, label_path, inst_path, feat_path):
opt = self.opt
# read label map
label_img = Image.open(label_path)
if label_path.find('face') != -1:
label_img = label_img.convert('L')
ow, oh = label_img.size
w = opt.loadSize
h = int(w * oh / ow)
label_img = label_img.resize((w, h), Image.NEAREST)
label_map = self.toTensor(label_img)
# onehot vector input for label map
self.label_map = label_map.cuda()
oneHot_size = (1, opt.label_nc, h, w)
input_label = self.Tensor(torch.Size(oneHot_size)).zero_()
self.input_label = input_label.scatter_(1, label_map.long().cuda(), 1.0)
# read instance map
if not opt.no_instance:
inst_img = Image.open(inst_path)
inst_img = inst_img.resize((w, h), Image.NEAREST)
self.inst_map = self.toTensor(inst_img).cuda()
self.edge_map = self.get_edges(self.inst_map)
self.net_input = Variable(torch.cat((self.input_label, self.edge_map), dim=1), volatile=True)
else:
self.net_input = Variable(self.input_label, volatile=True)
self.features_clustered = np.load(feat_path).item()
self.object_map = self.inst_map if opt.instance_feat else self.label_map
object_np = self.object_map.cpu().numpy().astype(int)
self.feat_map = self.Tensor(1, opt.feat_num, h, w).zero_()
self.cluster_indices = np.zeros(self.opt.label_nc, np.uint8)
for i in np.unique(object_np):
label = i if i < 1000 else i//1000
if label in self.features_clustered:
feat = self.features_clustered[label]
np.random.seed(i+1)
cluster_idx = np.random.randint(0, feat.shape[0])
self.cluster_indices[label] = cluster_idx
idx = (self.object_map == i).nonzero()
self.set_features(idx, feat, cluster_idx)
self.net_input_original = self.net_input.clone()
self.label_map_original = self.label_map.clone()
self.feat_map_original = self.feat_map.clone()
if not opt.no_instance:
self.inst_map_original = self.inst_map.clone()
def reset(self):
self.net_input = self.net_input_prev = self.net_input_original.clone()
self.label_map = self.label_map_prev = self.label_map_original.clone()
self.feat_map = self.feat_map_prev = self.feat_map_original.clone()
if not self.opt.no_instance:
self.inst_map = self.inst_map_prev = self.inst_map_original.clone()
self.object_map = self.inst_map if self.opt.instance_feat else self.label_map
def undo(self):
self.net_input = self.net_input_prev
self.label_map = self.label_map_prev
self.feat_map = self.feat_map_prev
if not self.opt.no_instance:
self.inst_map = self.inst_map_prev
self.object_map = self.inst_map if self.opt.instance_feat else self.label_map
# get boundary map from instance map
def get_edges(self, t):
edge = torch.cuda.ByteTensor(t.size()).zero_()
edge[:,:,:,1:] = edge[:,:,:,1:] | (t[:,:,:,1:] != t[:,:,:,:-1])
edge[:,:,:,:-1] = edge[:,:,:,:-1] | (t[:,:,:,1:] != t[:,:,:,:-1])
edge[:,:,1:,:] = edge[:,:,1:,:] | (t[:,:,1:,:] != t[:,:,:-1,:])
edge[:,:,:-1,:] = edge[:,:,:-1,:] | (t[:,:,1:,:] != t[:,:,:-1,:])
return edge.float()
# change the label at the source position to the label at the target position
def change_labels(self, click_src, click_tgt):
y_src, x_src = click_src[0], click_src[1]
y_tgt, x_tgt = click_tgt[0], click_tgt[1]
label_src = int(self.label_map[0, 0, y_src, x_src])
inst_src = self.inst_map[0, 0, y_src, x_src]
label_tgt = int(self.label_map[0, 0, y_tgt, x_tgt])
inst_tgt = self.inst_map[0, 0, y_tgt, x_tgt]
idx_src = (self.inst_map == inst_src).nonzero()
# need to change 3 things: label map, instance map, and feature map
if idx_src.shape:
# backup current maps
self.backup_current_state()
# change both the label map and the network input
self.label_map[idx_src[:,0], idx_src[:,1], idx_src[:,2], idx_src[:,3]] = label_tgt
self.net_input[idx_src[:,0], idx_src[:,1] + label_src, idx_src[:,2], idx_src[:,3]] = 0
self.net_input[idx_src[:,0], idx_src[:,1] + label_tgt, idx_src[:,2], idx_src[:,3]] = 1
# update the instance map (and the network input)
if inst_tgt > 1000:
# if different instances have different ids, give the new object a new id
tgt_indices = (self.inst_map > label_tgt * 1000) & (self.inst_map < (label_tgt+1) * 1000)
inst_tgt = self.inst_map[tgt_indices].max() + 1
self.inst_map[idx_src[:,0], idx_src[:,1], idx_src[:,2], idx_src[:,3]] = inst_tgt
self.net_input[:,-1,:,:] = self.get_edges(self.inst_map)
# also copy the source features to the target position
idx_tgt = (self.inst_map == inst_tgt).nonzero()
if idx_tgt.shape:
self.copy_features(idx_src, idx_tgt[0,:])
self.fake_image = util.tensor2im(self.single_forward(self.net_input, self.feat_map))
# add strokes of target label in the image
def add_strokes(self, click_src, label_tgt, bw, save):
# get the region of the new strokes (bw is the brush width)
size = self.net_input.size()
h, w = size[2], size[3]
idx_src = torch.LongTensor(bw**2, 4).fill_(0)
for i in range(bw):
idx_src[i*bw:(i+1)*bw, 2] = min(h-1, max(0, click_src[0]-bw//2 + i))
for j in range(bw):
idx_src[i*bw+j, 3] = min(w-1, max(0, click_src[1]-bw//2 + j))
idx_src = idx_src.cuda()
# again, need to update 3 things
if idx_src.shape:
# backup current maps
if save:
self.backup_current_state()
# update the label map (and the network input) in the stroke region
self.label_map[idx_src[:,0], idx_src[:,1], idx_src[:,2], idx_src[:,3]] = label_tgt
for k in range(self.opt.label_nc):
self.net_input[idx_src[:,0], idx_src[:,1] + k, idx_src[:,2], idx_src[:,3]] = 0
self.net_input[idx_src[:,0], idx_src[:,1] + label_tgt, idx_src[:,2], idx_src[:,3]] = 1
# update the instance map (and the network input)
self.inst_map[idx_src[:,0], idx_src[:,1], idx_src[:,2], idx_src[:,3]] = label_tgt
self.net_input[:,-1,:,:] = self.get_edges(self.inst_map)
# also update the features if available
if self.opt.instance_feat:
feat = self.features_clustered[label_tgt]
#np.random.seed(label_tgt+1)
#cluster_idx = np.random.randint(0, feat.shape[0])
cluster_idx = self.cluster_indices[label_tgt]
self.set_features(idx_src, feat, cluster_idx)
self.fake_image = util.tensor2im(self.single_forward(self.net_input, self.feat_map))
# add an object to the clicked position with selected style
def add_objects(self, click_src, label_tgt, mask, style_id=0):
y, x = click_src[0], click_src[1]
mask = np.transpose(mask, (2, 0, 1))[np.newaxis,...]
idx_src = torch.from_numpy(mask).cuda().nonzero()
idx_src[:,2] += y
idx_src[:,3] += x
# backup current maps
self.backup_current_state()
# update label map
self.label_map[idx_src[:,0], idx_src[:,1], idx_src[:,2], idx_src[:,3]] = label_tgt
for k in range(self.opt.label_nc):
self.net_input[idx_src[:,0], idx_src[:,1] + k, idx_src[:,2], idx_src[:,3]] = 0
self.net_input[idx_src[:,0], idx_src[:,1] + label_tgt, idx_src[:,2], idx_src[:,3]] = 1
# update instance map
self.inst_map[idx_src[:,0], idx_src[:,1], idx_src[:,2], idx_src[:,3]] = label_tgt
self.net_input[:,-1,:,:] = self.get_edges(self.inst_map)
# update feature map
self.set_features(idx_src, self.feat, style_id)
self.fake_image = util.tensor2im(self.single_forward(self.net_input, self.feat_map))
def single_forward(self, net_input, feat_map):
net_input = torch.cat((net_input, feat_map), dim=1)
fake_image = self.netG.forward(net_input)
if fake_image.size()[0] == 1:
return fake_image.data[0]
return fake_image.data
# generate all outputs for different styles
def style_forward(self, click_pt, style_id=-1):
if click_pt is None:
self.fake_image = util.tensor2im(self.single_forward(self.net_input, self.feat_map))
self.crop = None
self.mask = None
else:
instToChange = int(self.object_map[0, 0, click_pt[0], click_pt[1]])
self.instToChange = instToChange
label = instToChange if instToChange < 1000 else instToChange//1000
self.feat = self.features_clustered[label]
self.fake_image = []
self.mask = self.object_map == instToChange
idx = self.mask.nonzero()
self.get_crop_region(idx)
if idx.size():
if style_id == -1:
(min_y, min_x, max_y, max_x) = self.crop
### original
for cluster_idx in range(self.opt.multiple_output):
self.set_features(idx, self.feat, cluster_idx)
fake_image = self.single_forward(self.net_input, self.feat_map)
fake_image = util.tensor2im(fake_image[:,min_y:max_y,min_x:max_x])
self.fake_image.append(fake_image)
"""### To speed up previewing different style results, either crop or downsample the label maps
if instToChange > 1000:
(min_y, min_x, max_y, max_x) = self.crop
### crop
_, _, h, w = self.net_input.size()
offset = 512
y_start, x_start = max(0, min_y-offset), max(0, min_x-offset)
y_end, x_end = min(h, (max_y + offset)), min(w, (max_x + offset))
y_region = slice(y_start, y_start+(y_end-y_start)//16*16)
x_region = slice(x_start, x_start+(x_end-x_start)//16*16)
net_input = self.net_input[:,:,y_region,x_region]
for cluster_idx in range(self.opt.multiple_output):
self.set_features(idx, self.feat, cluster_idx)
fake_image = self.single_forward(net_input, self.feat_map[:,:,y_region,x_region])
fake_image = util.tensor2im(fake_image[:,min_y-y_start:max_y-y_start,min_x-x_start:max_x-x_start])
self.fake_image.append(fake_image)
else:
### downsample
(min_y, min_x, max_y, max_x) = [crop//2 for crop in self.crop]
net_input = self.net_input[:,:,::2,::2]
size = net_input.size()
net_input_batch = net_input.expand(self.opt.multiple_output, size[1], size[2], size[3])
for cluster_idx in range(self.opt.multiple_output):
self.set_features(idx, self.feat, cluster_idx)
feat_map = self.feat_map[:,:,::2,::2]
if cluster_idx == 0:
feat_map_batch = feat_map
else:
feat_map_batch = torch.cat((feat_map_batch, feat_map), dim=0)
fake_image_batch = self.single_forward(net_input_batch, feat_map_batch)
for i in range(self.opt.multiple_output):
self.fake_image.append(util.tensor2im(fake_image_batch[i,:,min_y:max_y,min_x:max_x]))"""
else:
self.set_features(idx, self.feat, style_id)
self.cluster_indices[label] = style_id
self.fake_image = util.tensor2im(self.single_forward(self.net_input, self.feat_map))
def backup_current_state(self):
self.net_input_prev = self.net_input.clone()
self.label_map_prev = self.label_map.clone()
self.inst_map_prev = self.inst_map.clone()
self.feat_map_prev = self.feat_map.clone()
# crop the ROI and get the mask of the object
def get_crop_region(self, idx):
size = self.net_input.size()
h, w = size[2], size[3]
min_y, min_x = idx[:,2].min(), idx[:,3].min()
max_y, max_x = idx[:,2].max(), idx[:,3].max()
crop_min = 128
if max_y - min_y < crop_min:
min_y = max(0, (max_y + min_y) // 2 - crop_min // 2)
max_y = min(h-1, min_y + crop_min)
if max_x - min_x < crop_min:
min_x = max(0, (max_x + min_x) // 2 - crop_min // 2)
max_x = min(w-1, min_x + crop_min)
self.crop = (min_y, min_x, max_y, max_x)
self.mask = self.mask[:,:, min_y:max_y, min_x:max_x]
# update the feature map once a new object is added or the label is changed
def update_features(self, cluster_idx, mask=None, click_pt=None):
self.feat_map_prev = self.feat_map.clone()
# adding a new object
if mask is not None:
y, x = click_pt[0], click_pt[1]
mask = np.transpose(mask, (2,0,1))[np.newaxis,...]
idx = torch.from_numpy(mask).cuda().nonzero()
idx[:,2] += y
idx[:,3] += x
# changing the label of an existing object
else:
idx = (self.object_map == self.instToChange).nonzero()
# update feature map
self.set_features(idx, self.feat, cluster_idx)
# set the class features to the target feature
def set_features(self, idx, feat, cluster_idx):
for k in range(self.opt.feat_num):
self.feat_map[idx[:,0], idx[:,1] + k, idx[:,2], idx[:,3]] = feat[cluster_idx, k]
# copy the features at the target position to the source position
def copy_features(self, idx_src, idx_tgt):
for k in range(self.opt.feat_num):
val = self.feat_map[idx_tgt[0], idx_tgt[1] + k, idx_tgt[2], idx_tgt[3]]
self.feat_map[idx_src[:,0], idx_src[:,1] + k, idx_src[:,2], idx_src[:,3]] = val
def get_current_visuals(self, getLabel=False):
mask = self.mask
if self.mask is not None:
mask = np.transpose(self.mask[0].cpu().float().numpy(), (1,2,0)).astype(np.uint8)
dict_list = [('fake_image', self.fake_image), ('mask', mask)]
if getLabel: # only output label map if needed to save bandwidth
label = util.tensor2label(self.net_input.data[0], self.opt.label_nc)
dict_list += [('label', label)]
return OrderedDict(dict_list) |