File size: 22,466 Bytes
f39e999
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
# Copyright (c) 2021, NVIDIA CORPORATION.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.

import numpy as np
import torch
from torch_utils import misc
from torch_utils import persistence
from torch_utils.ops import conv2d_resample
from torch_utils.ops import upfirdn2d
from torch_utils.ops import bias_act
from torch_utils.ops import fma

from .networks import FullyConnectedLayer, Conv2dLayer, ToRGBLayer, MappingNetwork

from util.utilgan import hw_scales, fix_size, multimask

@misc.profiled_function
def modulated_conv2d(
    x,                          # Input tensor of shape [batch_size, in_channels, in_height, in_width].
    weight,                     # Weight tensor of shape [out_channels, in_channels, kernel_height, kernel_width].
    styles,                     # Modulation coefficients of shape [batch_size, in_channels].
# !!! custom
    # latmask,                      # mask for split-frame latents blending
    countHW         = [1,1],      # frame split count by height,width
    splitfine       = 0.,         # frame split edge fineness (float from 0+)
    size            = None,       # custom size
    scale_type      = None,       # scaling way: fit, centr, side, pad, padside
    noise           = None,     # Optional noise tensor to add to the output activations.
    up              = 1,        # Integer upsampling factor.
    down            = 1,        # Integer downsampling factor.
    padding         = 0,        # Padding with respect to the upsampled image.
    resample_filter = None,     # Low-pass filter to apply when resampling activations. Must be prepared beforehand by calling upfirdn2d.setup_filter().
    demodulate      = True,     # Apply weight demodulation?
    flip_weight     = True,     # False = convolution, True = correlation (matches torch.nn.functional.conv2d).
    fused_modconv   = True,     # Perform modulation, convolution, and demodulation as a single fused operation?
):
    batch_size = x.shape[0]
    out_channels, in_channels, kh, kw = weight.shape
    misc.assert_shape(weight, [out_channels, in_channels, kh, kw]) # [OIkk]
    misc.assert_shape(x, [batch_size, in_channels, None, None]) # [NIHW]
    misc.assert_shape(styles, [batch_size, in_channels]) # [NI]

    # Pre-normalize inputs to avoid FP16 overflow.
    if x.dtype == torch.float16 and demodulate:
        weight = weight * (1 / np.sqrt(in_channels * kh * kw) / weight.norm(float('inf'), dim=[1,2,3], keepdim=True)) # max_Ikk
        styles = styles / styles.norm(float('inf'), dim=1, keepdim=True) # max_I

    # Calculate per-sample weights and demodulation coefficients.
    w = None
    dcoefs = None
    if demodulate or fused_modconv:
        w = weight.unsqueeze(0) # [NOIkk]
        w = w * styles.reshape(batch_size, 1, -1, 1, 1) # [NOIkk]
    if demodulate:
        dcoefs = (w.square().sum(dim=[2,3,4]) + 1e-8).rsqrt() # [NO]
    if demodulate and fused_modconv:
        w = w * dcoefs.reshape(batch_size, -1, 1, 1, 1) # [NOIkk]

    # Execute by scaling the activations before and after the convolution.
    if not fused_modconv:
        x = x * styles.to(x.dtype).reshape(batch_size, -1, 1, 1)
        x = conv2d_resample.conv2d_resample(x=x, w=weight.to(x.dtype), f=resample_filter, up=up, down=down, padding=padding, flip_weight=flip_weight)
# !!! custom size & multi latent blending
        if size is not None and up==2:
            x = fix_size(x, size, scale_type)
            # x = multimask(x, size, latmask, countHW, splitfine)
        if demodulate and noise is not None:
            x = fma.fma(x, dcoefs.to(x.dtype).reshape(batch_size, -1, 1, 1), noise.to(x.dtype))
        elif demodulate:
            x = x * dcoefs.to(x.dtype).reshape(batch_size, -1, 1, 1)
        elif noise is not None:
            x = x.add_(noise.to(x.dtype))
        return x

    # Execute as one fused op using grouped convolution.
    with misc.suppress_tracer_warnings(): # this value will be treated as a constant
        batch_size = int(batch_size)
    misc.assert_shape(x, [batch_size, in_channels, None, None])
    x = x.reshape(1, -1, *x.shape[2:])
    w = w.reshape(-1, in_channels, kh, kw)
    x = conv2d_resample.conv2d_resample(x=x, w=w.to(x.dtype), f=resample_filter, up=up, down=down, padding=padding, groups=batch_size, flip_weight=flip_weight)
    x = x.reshape(batch_size, -1, *x.shape[2:])
# !!! custom size & multi latent blending
    if size is not None and up==2:
        x = fix_size(x, size, scale_type)
        # x = multimask(x, size, latmask, countHW, splitfine)
    if noise is not None:
        x = x.add_(noise)
    return x

#----------------------------------------------------------------------------

@persistence.persistent_class
class SynthesisLayer(torch.nn.Module):
    def __init__(self,
        in_channels,                    # Number of input channels.
        out_channels,                   # Number of output channels.
        w_dim,                          # Intermediate latent (W) dimensionality.
        resolution,                     # Resolution of this layer.
# !!! custom
        countHW         = [1,1],      # frame split count by height,width
        splitfine       = 0.,         # frame split edge fineness (float from 0+)
        size            = None,       # custom size
        scale_type      = None,       # scaling way: fit, centr, side, pad, padside
        init_res        = [4,4],      # Initial (minimal) resolution for progressive training
        kernel_size     = 3,            # Convolution kernel size.
        up              = 1,            # Integer upsampling factor.
        use_noise       = True,         # Enable noise input?
        activation      = 'lrelu',      # Activation function: 'relu', 'lrelu', etc.
        resample_filter = [1,3,3,1],    # Low-pass filter to apply when resampling activations.
        conv_clamp      = None,         # Clamp the output of convolution layers to +-X, None = disable clamping.
        channels_last   = False,        # Use channels_last format for the weights?
    ):
        super().__init__()
        self.resolution = resolution
        self.countHW = countHW # !!! custom
        self.splitfine = splitfine # !!! custom
        self.size = size # !!! custom
        self.scale_type = scale_type # !!! custom
        self.init_res = init_res # !!! custom
        self.up = up
        self.use_noise = use_noise
        self.activation = activation
        self.conv_clamp = conv_clamp
        self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter))
        self.padding = kernel_size // 2
        self.act_gain = bias_act.activation_funcs[activation].def_gain

        self.affine = FullyConnectedLayer(w_dim, in_channels, bias_init=1)
        memory_format = torch.channels_last if channels_last else torch.contiguous_format
        self.weight = torch.nn.Parameter(torch.randn([out_channels, in_channels, kernel_size, kernel_size]).to(memory_format=memory_format))
        if use_noise:
# !!! custom
            self.register_buffer('noise_const', torch.randn([resolution * init_res[0]//4, resolution * init_res[1]//4]))
            # self.register_buffer('noise_const', torch.randn([resolution, resolution]))
            self.noise_strength = torch.nn.Parameter(torch.zeros([]))
        self.bias = torch.nn.Parameter(torch.zeros([out_channels]))

# !!! custom 
    # def forward(self, x, latmask, w, noise_mode='random', fused_modconv=True, gain=1):
    def forward(self, x, w, noise_mode='random', fused_modconv=True, gain=1):
        assert noise_mode in ['random', 'const', 'none']
        in_resolution = self.resolution // self.up
        # misc.assert_shape(x, [None, self.weight.shape[1], in_resolution, in_resolution])
        styles = self.affine(w)

        noise = None
        if self.use_noise and noise_mode == 'random':
# !!! custom
            sz = self.size if self.up==2 and self.size is not None else x.shape[2:]
            noise = torch.randn([x.shape[0], 1, *sz], device=x.device) * self.noise_strength
            # noise = torch.randn([x.shape[0], 1, self.resolution, self.resolution], device=x.device) * self.noise_strength
        if self.use_noise and noise_mode == 'const':
            noise = self.noise_const * self.noise_strength
# !!! custom noise size
            noise_size = self.size if self.up==2 and self.size is not None and self.resolution > 4 else x.shape[2:]
            noise = fix_size(noise.unsqueeze(0).unsqueeze(0), noise_size, scale_type=self.scale_type)[0][0]

        # print(x.shape, noise.shape, self.size, self.up)

        flip_weight = (self.up == 1) # slightly faster
        # x = modulated_conv2d(x=x, weight=self.weight, styles=styles, noise=noise, up=self.up,
            # latmask=latmask, countHW=self.countHW, splitfine=self.splitfine, size=self.size, scale_type=self.scale_type, # !!! custom
            # padding=self.padding, resample_filter=self.resample_filter, flip_weight=flip_weight, fused_modconv=fused_modconv)

        x = modulated_conv2d(x=x, weight=self.weight, styles=styles, noise=noise, up=self.up,
            countHW=self.countHW, splitfine=self.splitfine, size=self.size, scale_type=self.scale_type, # !!! custom
            padding=self.padding, resample_filter=self.resample_filter, flip_weight=flip_weight, fused_modconv=fused_modconv)


        act_gain = self.act_gain * gain
        act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None
        x = bias_act.bias_act(x, self.bias.to(x.dtype), act=self.activation, gain=act_gain, clamp=act_clamp)
        return x

#----------------------------------------------------------------------------

@persistence.persistent_class
class SynthesisBlock(torch.nn.Module):
    def __init__(self,
        in_channels,                        # Number of input channels, 0 = first block.
        out_channels,                       # Number of output channels.
        w_dim,                              # Intermediate latent (W) dimensionality.
        resolution,                         # Resolution of this block.
        img_channels,                       # Number of output color channels.
        is_last,                            # Is this the last block?
# !!! custom
        size                = None,       # custom size
        scale_type          = None,       # scaling way: fit, centr, side, pad, padside
        init_res            = [4,4],      # Initial (minimal) resolution for progressive training
        architecture        = 'skip',       # Architecture: 'orig', 'skip', 'resnet'.
        resample_filter     = [1,3,3,1],    # Low-pass filter to apply when resampling activations.
        conv_clamp          = None,         # Clamp the output of convolution layers to +-X, None = disable clamping.
        use_fp16            = False,        # Use FP16 for this block?
        fp16_channels_last  = False,        # Use channels-last memory format with FP16?
        **layer_kwargs,                     # Arguments for SynthesisLayer.
    ):
        assert architecture in ['orig', 'skip', 'resnet']
        super().__init__()
        self.in_channels = in_channels
        self.w_dim = w_dim
        self.resolution = resolution
        self.size = size # !!! custom
        self.scale_type = scale_type # !!! custom
        self.init_res = init_res # !!! custom
        self.img_channels = img_channels
        self.is_last = is_last
        self.architecture = architecture
        self.use_fp16 = use_fp16
        self.channels_last = (use_fp16 and fp16_channels_last)
        self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter))
        self.num_conv = 0
        self.num_torgb = 0

        if in_channels == 0:
# !!! custom
            self.const = torch.nn.Parameter(torch.randn([out_channels, *init_res]))
            # self.const = torch.nn.Parameter(torch.randn([out_channels, resolution, resolution]))

        if in_channels != 0:
            self.conv0 = SynthesisLayer(in_channels, out_channels, w_dim=w_dim, resolution=resolution, up=2, 
                init_res=init_res, scale_type=scale_type, size=size, # !!! custom
                resample_filter=resample_filter, conv_clamp=conv_clamp, channels_last=self.channels_last, **layer_kwargs)
            self.num_conv += 1

        self.conv1 = SynthesisLayer(out_channels, out_channels, w_dim=w_dim, resolution=resolution, 
            init_res=init_res, scale_type=scale_type, size=size, # !!! custom
            conv_clamp=conv_clamp, channels_last=self.channels_last, **layer_kwargs)
        self.num_conv += 1

        if is_last or architecture == 'skip':
            self.torgb = ToRGBLayer(out_channels, img_channels, w_dim=w_dim,
                conv_clamp=conv_clamp, channels_last=self.channels_last)
            self.num_torgb += 1

        if in_channels != 0 and architecture == 'resnet':
            self.skip = Conv2dLayer(in_channels, out_channels, kernel_size=1, bias=False, up=2,
                resample_filter=resample_filter, channels_last=self.channels_last)

# !!! custom
    # def forward(self, x, img, ws, latmask, dconst, force_fp32=False, fused_modconv=None, **layer_kwargs):
    def forward(self, x, img, ws, force_fp32=False, fused_modconv=None, **layer_kwargs):
        misc.assert_shape(ws, [None, self.num_conv + self.num_torgb, self.w_dim])
        w_iter = iter(ws.unbind(dim=1))
        dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32
        memory_format = torch.channels_last if self.channels_last and not force_fp32 else torch.contiguous_format
        if fused_modconv is None:
            with misc.suppress_tracer_warnings(): # this value will be treated as a constant
                fused_modconv = (not self.training) and (dtype == torch.float32 or int(x.shape[0]) == 1)

        # Input.
        if self.in_channels == 0:
            x = self.const.to(dtype=dtype, memory_format=memory_format)
            x = x.unsqueeze(0).repeat([ws.shape[0], 1, 1, 1])
# !!! custom const size
            if 'side' in self.scale_type and 'symm' in self.scale_type: # looks better
                const_size = self.init_res if self.size is None else self.size
                x = fix_size(x, const_size, self.scale_type)
# distortion technique from Aydao
            # x += dconst
        else:
            # misc.assert_shape(x, [None, self.in_channels, self.resolution // 2, self.resolution // 2])
            x = x.to(dtype=dtype, memory_format=memory_format)

        # Main layers.
        if self.in_channels == 0:
# !!! custom latmask
            # x = self.conv1(x, None, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs)
            x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs)
        elif self.architecture == 'resnet':
            y = self.skip(x, gain=np.sqrt(0.5))
# !!! custom latmask
            # x = self.conv0(x, latmask, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs)
            # x = self.conv1(x, None, next(w_iter), fused_modconv=fused_modconv, gain=np.sqrt(0.5), **layer_kwargs)
            x = self.conv0(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs)
            x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, gain=np.sqrt(0.5), **layer_kwargs)
            x = y.add_(x)
        else:
# !!! custom latmask
            # x = self.conv0(x, latmask, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs)
            # x = self.conv1(x, None, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs)
            x = self.conv0(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs)
            x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs)

        # ToRGB.
        if img is not None:
# !!! custom img size
            # misc.assert_shape(img, [None, self.img_channels, self.resolution // 2, self.resolution // 2])
            img = upfirdn2d.upsample2d(img, self.resample_filter)
            img = fix_size(img, self.size, scale_type=self.scale_type)
            
        if self.is_last or self.architecture == 'skip':
            y = self.torgb(x, next(w_iter), fused_modconv=fused_modconv)
            y = y.to(dtype=torch.float32, memory_format=torch.contiguous_format)
            img = img.add_(y) if img is not None else y

        assert x.dtype == dtype
        assert img is None or img.dtype == torch.float32
        return x, img

#----------------------------------------------------------------------------

@persistence.persistent_class
class SynthesisNetwork(torch.nn.Module):
    def __init__(self,
        w_dim,                      # Intermediate latent (W) dimensionality.
        img_resolution,             # Output image resolution.
        img_channels,               # Number of color channels.
# !!! custom
        init_res        = [4,4],      # Initial (minimal) resolution for progressive training
        size            = None,       # Output size
        scale_type      = None,       # scaling way: fit, centr, side, pad, padside
        channel_base    = 32768,    # Overall multiplier for the number of channels.
        channel_max     = 512,      # Maximum number of channels in any layer.
        num_fp16_res    = 0,        # Use FP16 for the N highest resolutions.
        verbose         = False,      #
        **block_kwargs,             # Arguments for SynthesisBlock.
    ):
        assert img_resolution >= 4 and img_resolution & (img_resolution - 1) == 0
        super().__init__()
        self.w_dim = w_dim
        self.img_resolution = img_resolution
        self.res_log2 = int(np.log2(img_resolution))
        self.img_channels = img_channels
        self.fmap_base = channel_base
        self.block_resolutions = [2 ** i for i in range(2, self.res_log2 + 1)]
        channels_dict = {res: min(channel_base // res, channel_max) for res in self.block_resolutions}
        fp16_resolution = max(2 ** (self.res_log2 + 1 - num_fp16_res), 8)

        # calculate intermediate layers sizes for arbitrary output resolution
        custom_res = (img_resolution * init_res[0] // 4, img_resolution * init_res[1] // 4)
        if size is None: size = custom_res
        if init_res != [4,4] and verbose:
            print(' .. init res', init_res, size)
        keep_first_layers = 2 if scale_type == 'fit' else None
        hws = hw_scales(size, custom_res, self.res_log2 - 2, keep_first_layers, verbose)
        if verbose: print(hws, '..', custom_res, self.res_log2-1)
        
        self.num_ws = 0
        for i, res in enumerate(self.block_resolutions):
            in_channels = channels_dict[res // 2] if res > 4 else 0
            out_channels = channels_dict[res]
            use_fp16 = (res >= fp16_resolution)
            is_last = (res == self.img_resolution)
            block = SynthesisBlock(in_channels, out_channels, w_dim=w_dim, resolution=res, 
                init_res=init_res, scale_type=scale_type, size=hws[i], # !!! custom
                img_channels=img_channels, is_last=is_last, use_fp16=use_fp16, **block_kwargs)
            self.num_ws += block.num_conv
            if is_last:
                self.num_ws += block.num_torgb
            setattr(self, f'b{res}', block)

    # def forward(self, ws, latmask, dconst, **block_kwargs):
    def forward(self, ws, **block_kwargs):
        block_ws = []
        with torch.autograd.profiler.record_function('split_ws'):
            misc.assert_shape(ws, [None, self.num_ws, self.w_dim])
            ws = ws.to(torch.float32)
            w_idx = 0
            for res in self.block_resolutions:
                block = getattr(self, f'b{res}')
                block_ws.append(ws.narrow(1, w_idx, block.num_conv + block.num_torgb))
                w_idx += block.num_conv

        x = img = None
        for res, cur_ws in zip(self.block_resolutions, block_ws):
            block = getattr(self, f'b{res}')
# !!! custom
            # x, img = block(x, img, cur_ws, latmask, dconst, **block_kwargs)
            x, img = block(x, img, cur_ws, **block_kwargs)
        return img

#----------------------------------------------------------------------------

@persistence.persistent_class
class Generator(torch.nn.Module):
    def __init__(self,
        z_dim,                      # Input latent (Z) dimensionality.
        c_dim,                      # Conditioning label (C) dimensionality.
        w_dim,                      # Intermediate latent (W) dimensionality.
        img_resolution,             # Output resolution.
        img_channels,               # Number of output color channels.
# !!! custom
        init_res            = [4,4],  # Initial (minimal) resolution for progressive training
        mapping_kwargs      = {},   # Arguments for MappingNetwork.
        synthesis_kwargs    = {},   # Arguments for SynthesisNetwork.
    ):
        super().__init__()
        self.z_dim = z_dim
        self.c_dim = c_dim
        self.w_dim = w_dim
        self.img_resolution = img_resolution
        self.init_res = init_res # !!! custom
        self.img_channels = img_channels
# !!! custom
        self.synthesis = SynthesisNetwork(w_dim=w_dim, img_resolution=img_resolution, init_res=init_res, img_channels=img_channels, **synthesis_kwargs) # !!! custom
        self.num_ws = self.synthesis.num_ws
        self.mapping = MappingNetwork(z_dim=z_dim, c_dim=c_dim, w_dim=w_dim, num_ws=self.num_ws, **mapping_kwargs)
# !!! custom
        self.output_shape = [1, img_channels, img_resolution * init_res[0] // 4, img_resolution * init_res[1] // 4]

# !!! custom
    # def forward(self, z, c, latmask, dconst, truncation_psi=1, truncation_cutoff=None, **synthesis_kwargs):
    def forward(self, z, c, truncation_psi=1, truncation_cutoff=None, **synthesis_kwargs):
    # def forward(self, z, c, truncation_psi=1, truncation_cutoff=None, **synthesis_kwargs):
        ws = self.mapping(z, c, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff)
        # img = self.synthesis(ws, latmask, dconst, **synthesis_kwargs) # !!! custom
        img = self.synthesis(ws, **synthesis_kwargs) # !!! custom
        return img