File size: 5,748 Bytes
7f57e7f
 
 
 
 
 
 
 
7558c04
 
 
 
 
 
 
7f57e7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7558c04
7f57e7f
 
 
 
 
 
 
03a7030
7f57e7f
 
 
 
 
 
 
 
 
 
 
 
 
03a7030
7f57e7f
 
 
 
03a7030
7f57e7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03a7030
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import streamlit as st
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import fitz
import os

model = AutoModelForSequenceClassification.from_pretrained("Reem333/Citaion-Classifier")
tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-base-4096")
def extract_text_from_pdf(file_path):
    text = ''
    with fitz.open(file_path) as pdf_document:
        for page_number in range(pdf_document.page_count):
            page = pdf_document.load_page(page_number)
            text += page.get_text()
    return text

def predict_class(text):
    try:
        max_length = 4096
        truncated_text = text[:max_length]

        inputs = tokenizer(truncated_text, return_tensors="pt", padding=True, truncation=True, max_length=max_length)
        with torch.no_grad():
            outputs = model(**inputs)
            logits = outputs.logits
            predicted_class = torch.argmax(logits, dim=1).item()
        return predicted_class
    except Exception as e:
        st.error(f"Error during prediction: {e}")
        return None

uploaded_files_dir = "uploaded_files"
os.makedirs(uploaded_files_dir, exist_ok=True)

class_colors = {
    0: "#d62728",  # Level 1
    1: "#ff7f0e",  # Level 2
    2: "#2ca02c",  # Level 3
    3: "#1f77b4"   # Level 4
}

st.set_page_config(page_title="Paper Citation Classifier", page_icon="logo.png")

with st.sidebar:
    st.image("logo.png", width=70)
    st.markdown('<div style="position: absolute; left: 5px;"></div>', unsafe_allow_html=True)
    
    st.markdown("# Paper Citation Classifier")
    st.markdown("---")
    st.markdown("## About")
    st.markdown('''
    This is a tool to classify paper citations into different levels based on their number of citations.
    Powered by Fine-Tuned [Longformer model](https://huggingface.co/Reem333/LongFormer-Paper-Citaion-Classifier) with custom data.
    ''')
    st.markdown("### Class Levels:")
    st.markdown("- Level 1: Highly cited papers")
    st.markdown("- Level 2: Average cited papers")
    st.markdown("- Level 3: More cited papers")
    st.markdown("- Level 4: Low cited papers")
    st.markdown("---")
    #st.markdown('Tabuk University')

st.title("Check Your Paper Now!")

option = st.radio("Select input type:", ("Text", "PDF"))

if option == "Text":
    title_input = st.text_area("Enter Title:")
    abstract_input = st.text_area("Enter Abstract:")
    full_text_input = st.text_area("Enter Full Text:")
    affiliations_input = st.text_area("Enter Affiliations:")
    keywords_input = st.text_area("Enter Keywords:")
    options=["Nursing", "Physics", "Maths", "Chemical", "Nuclear", "Engineering" ,"Other"]
    
    selected_category = st.selectbox("Select WoS categories:", options, index= None)
    if selected_category == "Other":
        custom_category = st.text_input("Enter custom category:")
        selected_category = custom_category if custom_category else "Other"

    combined_text = f"{title_input} [SEP] {keywords_input} [SEP] {abstract_input} [SEP] {selected_category} [SEP] {affiliations_input} [SEP] {' [SEP] '.join(full_text_input)}"

    if st.button("Predict"):
        if not any([title_input, abstract_input,keywords_input, full_text_input, affiliations_input]):
            st.warning("Please enter paper text.")
        else:
            with st.spinner("Predicting..."):
                predicted_class = predict_class(combined_text)
                if predicted_class is not None:
                    class_labels = ["Level 1", "Level 2", "Level 3", "Level 4"]

                    st.text("Predicted Class:")
                    for i, label in enumerate(class_labels):
                        if i == predicted_class:
                            st.markdown(
                                f'<div style="background-color: {class_colors[predicted_class]}; padding: 10px; border-radius: 5px; color: white; font-weight: bold;">{label}</div>',
                                unsafe_allow_html=True
                            )
                        else:
                            st.text(label)

elif option == "PDF":
    uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"])

    if uploaded_file is not None:
        with st.spinner("Processing PDF..."):
            file_path = os.path.join(uploaded_files_dir, uploaded_file.name)
            with open(file_path, "wb") as f:
                f.write(uploaded_file.getbuffer())
            st.success("File uploaded successfully.")
            st.text(f"File Path: {file_path}")
            
            file_text = extract_text_from_pdf(file_path)
            st.text("Extracted Text:")
            st.text(file_text)

            if st.button("Predict from PDF Text"):
                if not file_text.strip():
                    st.warning("Please upload a PDF with text content.")
                else:
                    with st.spinner("Predicting..."):
                        predicted_class = predict_class(file_text)
                        if predicted_class is not None:
                            class_labels = ["Level 1", "Level 2", "Level 3", "Level 4"]
                            st.text("**Predicted Class:**")
                            for i, label in enumerate(class_labels):
                                if i == predicted_class:
                                    st.markdown(
                                        f'<div style="background-color: {class_colors[predicted_class]}; padding: 10px; border-radius: 5px; color: white; font-weight: bold;">{label}</div>',
                                        unsafe_allow_html=True
                                    )
                                else:
                                    st.text(label)