Spaces:
Runtime error
Runtime error
File size: 5,748 Bytes
7f57e7f 7558c04 7f57e7f 7558c04 7f57e7f 03a7030 7f57e7f 03a7030 7f57e7f 03a7030 7f57e7f 03a7030 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import streamlit as st
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import fitz
import os
model = AutoModelForSequenceClassification.from_pretrained("Reem333/Citaion-Classifier")
tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-base-4096")
def extract_text_from_pdf(file_path):
text = ''
with fitz.open(file_path) as pdf_document:
for page_number in range(pdf_document.page_count):
page = pdf_document.load_page(page_number)
text += page.get_text()
return text
def predict_class(text):
try:
max_length = 4096
truncated_text = text[:max_length]
inputs = tokenizer(truncated_text, return_tensors="pt", padding=True, truncation=True, max_length=max_length)
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_class = torch.argmax(logits, dim=1).item()
return predicted_class
except Exception as e:
st.error(f"Error during prediction: {e}")
return None
uploaded_files_dir = "uploaded_files"
os.makedirs(uploaded_files_dir, exist_ok=True)
class_colors = {
0: "#d62728", # Level 1
1: "#ff7f0e", # Level 2
2: "#2ca02c", # Level 3
3: "#1f77b4" # Level 4
}
st.set_page_config(page_title="Paper Citation Classifier", page_icon="logo.png")
with st.sidebar:
st.image("logo.png", width=70)
st.markdown('<div style="position: absolute; left: 5px;"></div>', unsafe_allow_html=True)
st.markdown("# Paper Citation Classifier")
st.markdown("---")
st.markdown("## About")
st.markdown('''
This is a tool to classify paper citations into different levels based on their number of citations.
Powered by Fine-Tuned [Longformer model](https://huggingface.co/Reem333/LongFormer-Paper-Citaion-Classifier) with custom data.
''')
st.markdown("### Class Levels:")
st.markdown("- Level 1: Highly cited papers")
st.markdown("- Level 2: Average cited papers")
st.markdown("- Level 3: More cited papers")
st.markdown("- Level 4: Low cited papers")
st.markdown("---")
#st.markdown('Tabuk University')
st.title("Check Your Paper Now!")
option = st.radio("Select input type:", ("Text", "PDF"))
if option == "Text":
title_input = st.text_area("Enter Title:")
abstract_input = st.text_area("Enter Abstract:")
full_text_input = st.text_area("Enter Full Text:")
affiliations_input = st.text_area("Enter Affiliations:")
keywords_input = st.text_area("Enter Keywords:")
options=["Nursing", "Physics", "Maths", "Chemical", "Nuclear", "Engineering" ,"Other"]
selected_category = st.selectbox("Select WoS categories:", options, index= None)
if selected_category == "Other":
custom_category = st.text_input("Enter custom category:")
selected_category = custom_category if custom_category else "Other"
combined_text = f"{title_input} [SEP] {keywords_input} [SEP] {abstract_input} [SEP] {selected_category} [SEP] {affiliations_input} [SEP] {' [SEP] '.join(full_text_input)}"
if st.button("Predict"):
if not any([title_input, abstract_input,keywords_input, full_text_input, affiliations_input]):
st.warning("Please enter paper text.")
else:
with st.spinner("Predicting..."):
predicted_class = predict_class(combined_text)
if predicted_class is not None:
class_labels = ["Level 1", "Level 2", "Level 3", "Level 4"]
st.text("Predicted Class:")
for i, label in enumerate(class_labels):
if i == predicted_class:
st.markdown(
f'<div style="background-color: {class_colors[predicted_class]}; padding: 10px; border-radius: 5px; color: white; font-weight: bold;">{label}</div>',
unsafe_allow_html=True
)
else:
st.text(label)
elif option == "PDF":
uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"])
if uploaded_file is not None:
with st.spinner("Processing PDF..."):
file_path = os.path.join(uploaded_files_dir, uploaded_file.name)
with open(file_path, "wb") as f:
f.write(uploaded_file.getbuffer())
st.success("File uploaded successfully.")
st.text(f"File Path: {file_path}")
file_text = extract_text_from_pdf(file_path)
st.text("Extracted Text:")
st.text(file_text)
if st.button("Predict from PDF Text"):
if not file_text.strip():
st.warning("Please upload a PDF with text content.")
else:
with st.spinner("Predicting..."):
predicted_class = predict_class(file_text)
if predicted_class is not None:
class_labels = ["Level 1", "Level 2", "Level 3", "Level 4"]
st.text("**Predicted Class:**")
for i, label in enumerate(class_labels):
if i == predicted_class:
st.markdown(
f'<div style="background-color: {class_colors[predicted_class]}; padding: 10px; border-radius: 5px; color: white; font-weight: bold;">{label}</div>',
unsafe_allow_html=True
)
else:
st.text(label) |