Spaces:
Sleeping
Sleeping
File size: 5,500 Bytes
688976a e8bad6c 688976a 97f1bae 688976a 97f1bae 688976a e8bad6c 688976a 2e0064d 51f1b25 2e0064d e8bad6c 97f1bae e8bad6c 0cb1388 e8bad6c 2e0064d 0cb1388 97f1bae 2e0064d 51f1b25 16bf670 e8bad6c 2e0064d e8bad6c 51f1b25 2e0064d 97f1bae 0cb1388 97f1bae 0cb1388 2e0064d 0cb1388 97f1bae 0cb1388 97f1bae 0cb1388 97f1bae 0cb1388 97f1bae 0cb1388 2e0064d 2c719e3 2e0064d 0cb1388 2e0064d 2c719e3 0cb1388 2e0064d e8bad6c 97f1bae e8bad6c 2e0064d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
import gradio as gr
from gradio_image_prompter import ImagePrompter
import os
import yaml
from modules.sam_inference import SamInference
from modules.model_downloader import DEFAULT_MODEL_TYPE
from modules.paths import (OUTPUT_DIR, SAM2_CONFIGS_DIR)
from modules.utils import open_folder
from modules.constants import (AUTOMATIC_MODE, BOX_PROMPT_MODE)
class App:
def __init__(self,
args=None):
self.app = gr.Blocks()
self.args = args
self.sam_inf = SamInference()
self.image_modes = [AUTOMATIC_MODE, BOX_PROMPT_MODE]
self.default_mode = AUTOMATIC_MODE
default_param_config_path = os.path.join(SAM2_CONFIGS_DIR, "default_hparams.yaml")
with open(default_param_config_path, 'r') as file:
self.hparams = yaml.safe_load(file)
@staticmethod
def on_mode_change(mode: str):
return [
gr.Image(visible=mode == AUTOMATIC_MODE),
ImagePrompter(visible=mode == BOX_PROMPT_MODE),
gr.Accordion(visible=mode == AUTOMATIC_MODE),
]
def launch(self):
_mask_hparams = self.hparams["mask_hparams"]
with self.app:
with gr.Row():
with gr.Column(scale=5):
img_input = gr.Image(label="Input image here")
img_input_prompter = ImagePrompter(label="Prompt image with Box & Point", type='pil',
visible=self.default_mode == BOX_PROMPT_MODE)
with gr.Column(scale=5):
dd_input_modes = gr.Dropdown(label="Image Input Mode", value=self.default_mode,
choices=self.image_modes)
dd_models = gr.Dropdown(label="Model", value=DEFAULT_MODEL_TYPE,
choices=self.sam_inf.available_models)
with gr.Accordion("Mask Parameters", open=False) as acc_mask_hparams:
nb_points_per_side = gr.Number(label="points_per_side ", value=_mask_hparams["points_per_side"],
interactive=True)
nb_points_per_batch = gr.Number(label="points_per_batch ", value=_mask_hparams["points_per_batch"],
interactive=True)
sld_pred_iou_thresh = gr.Slider(label="pred_iou_thresh ", value=_mask_hparams["pred_iou_thresh"],
minimum=0, maximum=1, interactive=True)
sld_stability_score_thresh = gr.Slider(label="stability_score_thresh ", value=_mask_hparams["stability_score_thresh"],
minimum=0, maximum=1, interactive=True)
sld_stability_score_offset = gr.Slider(label="stability_score_offset ", value=_mask_hparams["stability_score_offset"],
minimum=0, maximum=1)
nb_crop_n_layers = gr.Number(label="crop_n_layers ", value=_mask_hparams["crop_n_layers"],)
sld_box_nms_thresh = gr.Slider(label="box_nms_thresh ", value=_mask_hparams["box_nms_thresh"],
minimum=0, maximum=1)
nb_crop_n_points_downscale_factor = gr.Number(label="crop_n_points_downscale_factor ",
value=_mask_hparams["crop_n_points_downscale_factor"],)
nb_min_mask_region_area = gr.Number(label="min_mask_region_area ", value=_mask_hparams["min_mask_region_area"],)
cb_use_m2m = gr.Checkbox(label="use_m2m ", value=_mask_hparams["use_m2m"])
cb_multimask_output = gr.Checkbox(label="multimask_output", value=_mask_hparams["multimask_output"])
with gr.Row():
btn_generate = gr.Button("GENERATE", variant="primary")
with gr.Row():
gallery_output = gr.Gallery(label="Output images will be shown here")
with gr.Column():
output_file = gr.File(label="Generated psd file", scale=9)
btn_open_folder = gr.Button("📁\nOpen PSD folder", scale=1)
sources = [img_input, img_input_prompter, dd_input_modes]
model_params = [dd_models]
mask_hparams = [nb_points_per_side, nb_points_per_batch, sld_pred_iou_thresh,
sld_stability_score_thresh, sld_stability_score_offset, nb_crop_n_layers,
sld_box_nms_thresh, nb_crop_n_points_downscale_factor, nb_min_mask_region_area,
cb_use_m2m, cb_multimask_output]
btn_generate.click(fn=self.sam_inf.divide_layer,
inputs=sources + model_params + mask_hparams, outputs=[gallery_output, output_file])
btn_open_folder.click(fn=lambda: open_folder(os.path.join(OUTPUT_DIR)),
inputs=None, outputs=None)
dd_input_modes.change(fn=self.on_mode_change,
inputs=[dd_input_modes],
outputs=[img_input, img_input_prompter, acc_mask_hparams])
self.app.queue().launch(inbrowser=True)
if __name__ == "__main__":
app = App()
app.launch()
|