File size: 62,432 Bytes
e4950ac
 
 
 
f08b1e6
 
 
e4950ac
 
f08b1e6
 
 
 
bf06760
 
 
d08917a
bf06760
f08b1e6
bf06760
 
d08917a
bf06760
f08b1e6
 
 
bf06760
d08917a
e4950ac
 
 
 
 
 
 
 
 
 
bf06760
 
e4950ac
 
d08917a
e4950ac
 
bf06760
f08b1e6
d08917a
f08b1e6
 
 
d08917a
f08b1e6
d08917a
 
f08b1e6
d08917a
 
f08b1e6
40931da
 
 
f9884d7
a399790
40931da
47c982e
40931da
 
 
a399790
bf06760
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40931da
a399790
bf06760
40931da
0fe444f
47c982e
d08917a
 
 
 
 
bf06760
 
 
 
 
 
d08917a
 
f08b1e6
e4950ac
 
7d8c955
e4950ac
0894bc7
d08917a
f08b1e6
d08917a
e4950ac
bf06760
e4950ac
40931da
38c665d
d08917a
 
40931da
d08917a
bf06760
d08917a
 
 
ab369bd
d08917a
 
 
 
 
ab369bd
d08917a
 
 
e4950ac
 
d08917a
b4fb6f3
e4950ac
 
 
 
 
d08917a
e4950ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d08917a
e4950ac
 
d08917a
e4950ac
 
 
f08b1e6
e4950ac
 
 
 
 
 
 
d08917a
e4950ac
 
 
 
 
 
 
d08917a
e4950ac
d08917a
bf06760
d08917a
 
 
bf06760
 
d08917a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4950ac
 
 
 
 
 
 
 
d08917a
 
e4950ac
d08917a
 
 
e4950ac
d08917a
 
 
 
e4950ac
f08b1e6
e4950ac
 
d08917a
e4950ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f08b1e6
d08917a
e4950ac
 
 
bf06760
 
 
 
d08917a
e4950ac
f08b1e6
e4950ac
d08917a
 
e4950ac
d08917a
40931da
1e4fe02
40931da
 
c25aacb
 
 
 
 
 
 
 
 
 
 
 
 
 
c7a1e0f
f9884d7
c25aacb
 
 
 
 
 
 
 
 
f9884d7
40931da
c25aacb
 
 
 
 
 
 
 
 
40931da
c25aacb
 
 
 
 
 
 
d08917a
c25aacb
4aa81c4
a6a2185
84e9804
a6a2185
 
 
 
 
 
 
 
 
 
f9884d7
a6a2185
 
f9884d7
a6a2185
 
f9884d7
a6a2185
 
f9884d7
a6a2185
f9884d7
a6a2185
8f7f566
f9884d7
 
f7f6c3a
 
a6a2185
 
359d52b
f9884d7
b2c97f3
8f7f566
f9884d7
d08917a
 
e4950ac
 
d08917a
 
 
 
 
 
 
 
 
 
 
e4950ac
d08917a
 
 
 
 
 
 
 
 
 
 
48800dc
d08917a
 
426139e
bf06760
 
 
9d3ec0f
 
 
 
bf06760
9d3ec0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf06760
 
9d3ec0f
bf06760
9d3ec0f
 
 
d08917a
 
bf06760
 
 
 
d08917a
bf06760
 
 
 
 
e4950ac
 
 
d08917a
 
e4950ac
 
 
 
 
d08917a
 
 
e4950ac
 
 
bf06760
e4950ac
 
 
 
 
 
 
 
d08917a
 
 
 
 
e4950ac
 
 
 
 
 
 
 
 
 
 
 
 
d08917a
f08b1e6
 
 
 
d08917a
 
 
f08b1e6
 
e4950ac
 
 
 
bf06760
e4950ac
 
 
 
 
 
 
bf06760
d08917a
f08b1e6
d08917a
f08b1e6
 
 
 
d08917a
f08b1e6
 
 
 
 
 
d08917a
e4950ac
 
 
 
40931da
a399790
f9884d7
a399790
 
 
40931da
d08917a
40931da
a399790
40931da
bf06760
 
 
bbf123a
a399790
40931da
bd21414
40931da
 
bd21414
bf06760
 
 
 
 
 
 
03bf030
 
 
bd21414
 
40931da
03bf030
 
bd21414
a399790
40931da
9b7d284
 
 
b654e9e
 
a399790
85e2306
bbf123a
 
47c982e
a399790
1a022d8
47c982e
a399790
47c982e
40931da
 
a399790
40931da
28a8111
9205517
47c982e
f9884d7
bf06760
b654e9e
 
 
 
 
 
 
 
40931da
b654e9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40931da
b654e9e
 
 
67e57d4
bf06760
b654e9e
 
 
 
 
 
 
 
 
0ddd34e
b654e9e
 
 
 
 
 
 
 
 
 
 
40931da
919e661
b654e9e
 
 
 
 
 
 
 
 
 
 
 
4c2c953
b654e9e
40931da
b654e9e
 
 
 
 
 
 
 
 
 
 
40931da
b654e9e
 
 
 
a399790
 
40931da
b654e9e
a399790
e4950ac
 
f08b1e6
d08917a
f08b1e6
d08917a
f08b1e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4950ac
2d2aa0c
3aa8a93
2d2aa0c
3aa8a93
2d2aa0c
 
 
 
 
 
 
d08917a
2d2aa0c
 
bf06760
 
d08917a
 
e4950ac
d08917a
2d2aa0c
e4950ac
 
 
 
2d2aa0c
f68e394
bf06760
d08917a
2d2aa0c
529bb03
 
 
2d2aa0c
 
 
 
d15bbb3
c25aacb
d15bbb3
 
72764b9
d15bbb3
c25aacb
28fd854
c25aacb
 
 
 
 
 
 
 
d08917a
bf1b1ca
72f3118
d08917a
ee37af5
72f3118
f08b1e6
 
 
e4950ac
bf06760
e4950ac
 
 
bf06760
 
 
d08917a
bf06760
 
e4950ac
35c9cbd
e4950ac
bf06760
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4950ac
 
 
d08917a
e4950ac
 
 
 
 
40931da
f6fd3d2
696f0ae
651bb1a
bf06760
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47c982e
bf06760
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca393e4
dfad006
ca393e4
bf06760
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b41393c
 
9f88cd1
 
 
 
311cf7d
9f88cd1
311cf7d
3e3cebb
311cf7d
3e3cebb
311cf7d
9f88cd1
c0bfe22
b8f860a
 
 
 
7fc690e
b8f860a
c0bfe22
7fc690e
a9c1aca
7fc690e
85c1b73
 
 
 
 
 
c87f07c
 
 
 
81e420d
 
8e1d6af
85c1b73
7fc690e
 
 
8e1d6af
7fc690e
b8f860a
4cc656b
213b4e1
bf06760
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e70c1a
 
bf06760
 
7e70c1a
 
8e1d6af
7ed1b94
 
7e70c1a
bf06760
 
2efbd35
83af1fb
bf06760
83af1fb
 
f45d85e
83af1fb
 
 
 
314075d
83af1fb
651bb1a
 
f87e2cf
 
 
651bb1a
7a8980b
 
 
 
 
 
 
 
 
 
f87e2cf
 
 
7a8980b
83af1fb
 
 
 
 
651bb1a
 
83af1fb
 
 
 
651bb1a
bf06760
a1957af
d207765
3b0ddd1
bf06760
83af1fb
 
651bb1a
bf06760
d0ce3b6
 
 
bf06760
b9cafb8
 
 
 
83af1fb
bf06760
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83af1fb
aa04435
bf06760
 
 
 
90bb409
 
 
bf06760
 
d08917a
bf06760
 
 
8e1d6af
58df56a
d08917a
bf06760
d08917a
bf06760
d08917a
bf06760
e4950ac
bf06760
d08917a
bf06760
d08917a
83af1fb
bf06760
ae63ea7
2a0111a
bf06760
7a8980b
bf06760
 
 
 
 
 
 
 
 
 
 
 
 
 
34a9b15
bf06760
 
 
 
 
 
 
f9884d7
 
e4950ac
 
 
d08917a
83af1fb
e4950ac
 
a399790
f9884d7
 
 
 
f08b1e6
bf06760
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
from PIL import Image
import base64
from io import BytesIO
import os
import re
import tempfile
import wave
import requests
import gradio as gr
import time
import shutil
import json
import nltk
import mysql.connector
import fnmatch
# audio related code is not included based on Arun's input
# audio package
import speech_recognition as sr
from pydub import AudioSegment
from pydub.playback import play
# SMTP code is not included since HFSpaces doesn't support it
# email library
import smtplib, ssl
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
from email.mime.base import MIMEBase
from email import encoders
# langchain
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnableSequence, RunnableLambda
from langchain_openai import ChatOpenAI
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.utilities import SQLDatabase
from langchain.agents import create_tool_calling_agent, AgentExecutor, Tool
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.tools import StructuredTool
#from langchain.pydantic_v1 import BaseModel, Field
from pydantic import BaseModel, Field
from PyPDF2 import PdfReader
from nltk.tokenize import sent_tokenize
from datetime import datetime
from sqlalchemy import create_engine
from sqlalchemy.sql import text
import openai

# pandas
import pandas as pd
from pandasai.llm.openai import OpenAI
from pandasai import SmartDataframe
from dotenv import load_dotenv

# Load environment variables
load_dotenv()

# langfuse analytics
from langfuse.callback import CallbackHandler

# Inventory API data table
from tabulate import tabulate

#forcefully stop the agent execution
import concurrent.futures
import threading

# mailjet_rest to send email
from mailjet_rest import Client
import base64

#for PDF form filling
from PyPDFForm import FormWrapper

#Variables Initialization
agent_executor = None
vector_store1 = None
texts1 = None
excel_dataframe = None
file_extension = None
total_rows = ""
docstatus = ""
sample_table = ""
#This is to define the summary of the runtime tool. This summary will be updated in prompt template and description of the new tool
run_time_tool_summary=""

# Define global variables for managing the thread and current_event
executor = concurrent.futures.ThreadPoolExecutor(max_workers=1)

current_event = None
stop_event = threading.Event()

# LangFuse API keys and host settings
os.environ["LANGFUSE_PUBLIC_KEY"] = os.getenv("LANGFUSE_PUBLIC_KEY")
os.environ["LANGFUSE_SECRET_KEY"] = os.getenv("LANGFUSE_SECRET_KEY")
os.environ["LANGFUSE_HOST"] = os.getenv("LANGFUSE_HOST")

DB_USER = 'u852023448_redmindgpt'
DB_PASSWORD = 'redmindGpt@123'
DB_HOST = '217.21.88.10'
DB_NAME = 'u852023448_redmindgpt'


langfuse_handler = CallbackHandler()
langfuse_handler.auth_check()  # Optional: Checks if the authentication is successful

nltk.download('punkt')

open_api_key_token = os.getenv("OPEN_AI_API")

os.environ['OPENAI_API_KEY'] = open_api_key_token
pdf_path = "Inbound.pdf"

db_uri = os.getenv("POSTGRESQL_CONNECTION")

# Database setup
db = SQLDatabase.from_uri(db_uri)

user_email = ""
warehouse_name = ""
warehouse_id = ""
# Today's date to be populated in inventory API
inventory_date = datetime.today().strftime('%Y-%m-%d')

apis = [
    # fetch warehouse ID
    {
        "url": "http://193.203.162.39:8383/nxt-wms/userWarehouse/fetchWarehouseForUserId?",
        "params": {"query": warehouse_name, "userId": 164}
    },

    # Stock summary based on warehouse id
    {
        "url": "http://193.203.162.39:8383/nxt-wms/transactionHistory/stockSummary?",
        "params": {"branchId": 343, "onDate": inventory_date, "warehouseId": warehouse_id}
    }
]

# LLM setup
llm = ChatOpenAI(model="gpt-4o-mini", max_tokens=300, temperature=0.1)
llm_chart = OpenAI(is_safe=False)

def get_schema(_):
    schema_info = db.get_table_info()  # This should be a string of your SQL schema
    return schema_info


def generate_sql_query(question):
    schema = get_schema(None)
    template_query_generation = """
    Schema: {schema}
    Question: {question}
    Provide a SQL query to answer the above question using the exact field names and table names specified in the schema.
    SQL Query (Please provide only the SQL statement without explanations or formatting):
    """
    prompt_query_generation = ChatPromptTemplate.from_template(template_query_generation)
    schema_and_question = RunnableLambda(lambda _: {'schema': schema, 'question': question})
    sql_chain = RunnableSequence(
        schema_and_question,
        prompt_query_generation,
        llm.bind(stop=["SQL Query End"]),  # Adjust the stop sequence to your need
        StrOutputParser()
    )
    sql_query = sql_chain.invoke({})
    sql_query = sql_chain.invoke({}, config={"callbacks": [langfuse_handler]})
    return sql_query.strip()


def run_query(query):
    # Clean the query by removing markdown symbols and trimming whitespace
    clean_query = query.replace("```sql", "").replace("```", "").strip()
    print(f"Executing SQL Query: {clean_query}")
    try:
        result = db.run(clean_query)
        return result
    except Exception as e:
        print(f"Error executing query: {e}")
        return None


# Define the database query tool
# The function that uses the above models
# Define the function that will handle the database query
def database_tool(question):
    sql_query = generate_sql_query(question)
    return run_query(sql_query)


def get_ASN_data(question):
    base_url = os.getenv("ASN_API_URL")
    print(f"base_url{base_url}")
    complete_url = f"{base_url}branchMaster.id=343&transactionUid={question}&userId=164&transactionType=ASN"
    try:
        response = requests.get(complete_url)
        print(f"complete_url{complete_url}")
        print(f"response{response}")
        data = response.json()
        response.raise_for_status()

        if 'result' in data and 'content' in data['result'] and data['result']['content']:
            content = data['result']['content'][0]
            trnHeaderAsn = content['trnHeaderAsn']
            party = content['party'][0]

            transactionUid = trnHeaderAsn['transactionUid']
            customerOrderNo = trnHeaderAsn.get('customerOrderNo', 'N/A')
            orderDate = trnHeaderAsn.get('orderDate', 'N/A')
            customerInvoiceNo = trnHeaderAsn.get('customerInvoiceNo', 'N/A')
            invoiceDate = trnHeaderAsn.get('invoiceDate', 'N/A')
            expectedReceivingDate = trnHeaderAsn['expectedReceivingDate']
            transactionStatus = trnHeaderAsn['transactionStatus']
            shipper_code = party['shipper']['code'] if party['shipper'] else 'N/A'
            shipper_name = party['shipper']['name'] if party['shipper'] else 'N/A'

            data = [
                ["Transaction UID", transactionUid],
                ["Customer Order No", customerOrderNo],
                ["Order Date", orderDate],
                ["Customer Invoice No", customerInvoiceNo],
                ["Invoice Date", invoiceDate],
                ["Expected Receiving Date", expectedReceivingDate],
                ["Transaction Status", transactionStatus],
                ["Shipper Code", shipper_code],
                ["Shipper Name", shipper_name]
            ]
            return f"The ASN details of {question} is {data}."
        else:
            return "ASN Details are not found. Please contact system administrator."

    except requests.exceptions.HTTPError as http_err:
        print(f"HTTP error occurred: {http_err}")
    except Exception as err:
        print(f"An error occurred: {err}")

def load_and_split_pdf(pdf_path):
    reader = PdfReader(pdf_path)
    text = ''
    for page in reader.pages:
        text += page.extract_text()
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=50)
    texts = text_splitter.split_text(text)
    return texts


def create_vector_store(texts):
    embeddings = OpenAIEmbeddings()
    vector_store = FAISS.from_texts(texts, embeddings)
    return vector_store


def query_vector_store(vector_store, query, config=None):
    if config:
        print("Config passed:", config)
    docs = vector_store.similarity_search(query, k=5)
    print(f"Vector store return: {docs}")
    return docs


def summarize_document(docs):
    summarized_docs = []
    for doc in docs:
        if isinstance(doc, list):
            doc_content = ' '.join([d.page_content for d in doc])
        else:
            doc_content = doc.page_content

        sentences = sent_tokenize(doc_content)
        if len(sentences) > 5:
            summarized_content = ' '.join(sentences[:5])
        else:
            summarized_content = doc_content
        summarized_docs.append(summarized_content)
    return '\n\n'.join(summarized_docs)


texts = load_and_split_pdf(pdf_path)
vector_store = create_vector_store(texts)

def document_data_tool_runtime(question):
    print(f"Document data runtime tool enter: {question} with {vector_store1}")
    query_response = query_vector_store(vector_store1, question, config={"callbacks": [langfuse_handler]})
    return query_response

def document_data_tool(question):
    print(f"Document data tool enter: {question}")
    # query_string = question['tags'][0] if 'tags' in question and question['tags'] else ""
    query_response = query_vector_store(vector_store, question, config={"callbacks": [langfuse_handler]})
    # summarized_response = summarize_document(query_response)
    return query_response

# mailjet API since SMTP is not supported HF spaces
def send_email_with_attachment_mailjet(recipient_email, subject, body, attach_img_base64=None):
    api_key = os.getenv("MAILJET_API_KEY")
    api_secret = os.getenv("MAILJET_API_SECRET")
    
    # Initialize the Mailjet client
    mailjet = Client(auth=(api_key, api_secret), version='v3.1')
    
    # Define the email details with an attachment
    data = {
      'Messages': [
        {
          "From": {
            "Email": "lakshmi.vairamani@redmindtechnologies.com",
            "Name": "Redmind Technologies"
          },
          "To": [
            {
              "Email": recipient_email,
              "Name": ""
            }
          ],
          "Subject": subject,
          "TextPart": body,
          
          "CustomID": "AppGettingStartedTest",
                "Attachments": [
                    {
                        "ContentType": "image/png",  # Replace with the correct MIME type of your image
                        "Filename": "inventory_report.png",  # Name of the image as it will appear in the email
                        "Base64Content": attach_img_base64  # Base64-encoded image content
                    }
                ]
    
        }
      ]
    }
    
    # Send the email
    result = mailjet.send.create(data=data)

    # Check if the email was sent successfully
    if result.status_code == 200:
        print("Email sent successfully with attachment!")
    else:
        print(f"Failed to send email. Status code: {result.status_code}")
        print(result.json())
        

#smtp lib
def send_email_with_attachment(recipient_email, subject, body, attachment_path):
    try:
        sender_email = os.getenv("EMAIL_SENDER")
        sender_password = os.getenv("EMAIL_PASSWORD")
        # Create a multipart message
        msg = MIMEMultipart()
        msg['From'] = sender_email
        msg['To'] = recipient_email
        msg['Subject'] = subject
        # Attach the body with the msg instance
        msg.attach(MIMEText(body, 'plain'))
        # Open the file to be sent
        attachment = open(attachment_path, "rb")
        # print("Attached the image")
        # Instance of MIMEBase and named as p
        part = MIMEBase('application', 'octet-stream')

        # To change the payload into encoded form
        part.set_payload((attachment).read())

        # Encode into base64
        encoders.encode_base64(part)

        part.add_header('Content-Disposition', f"attachment; filename= {attachment_path}")

        # Attach the instance 'part' to instance 'msg'
        msg.attach(part)

        server = smtplib.SMTP('smtp.gmail.com', 587)
        server.starttls()
        server.login(sender_email, sender_password)
        text = msg.as_string()
        server.sendmail(sender_email, recipient_email, text)
        server.quit()

    except Exception as error:
        print(f"An error occurred: {error}")

    # return 1


def make_api_request(url, params):
    """Generic function to make API GET requests and return JSON data."""
    try:
        response = requests.get(url, params=params)
        response.raise_for_status()  # Raises an HTTPError if the response was an error
        return response.json()  # Return the parsed JSON data
    except requests.exceptions.HTTPError as http_err:
        print(f"HTTP error occurred: {http_err}")
    except Exception as err:
        print(f"An error occurred: {err}")


def inventory_report(question):
    # Split the question to extract warehouse name, user question, and optional email
    if question.count(":") > 0:
        parts = question.split(":", 2)
        warehouse_name= parts[0].strip()
        user_question = parts[1].strip()
        user_email = parts[2].strip() if len(parts) > 2 else None
        print(f"Warehouse: {warehouse_name}, Email: {user_email}, Question: {user_question}")
    else:
        return "warehouse name not found"

    data = make_api_request(apis[0]["url"], apis[0]["params"])
    print(data)
    if data:
        # Extracting the id for the warehouse with the name "WH"
        warehouse_id = next((item['id'] for item in data['result'] if item['wareHouseId'] == warehouse_name), None)
       
        if (warehouse_id):         
            
            # Step 3: Update the placeholder with the actual warehouse_id
            for api in apis:
                if "warehouseId" in api["params"]:
                    api["params"]["warehouseId"] = warehouse_id
                              
            data1 = make_api_request(apis[1]["url"], apis[1]["params"])
            if (data1):
                headers = ["S.No", "Warehouse Code", "Warehouse Name", "Customer Code", "Customer Name", "Item Code", "Item Name",
                           "Currency", "EAN", "UOM", "Quantity", "Gross Weight", "Volume", "Total Value"]
                table_data = []
        
                for index, item in enumerate(data1['result'], start=1):
                    row = [
                        index,  # Serial number
                        item['warehouse']['code'],
                        item['warehouse']['name'],
                        item['customer']['code'],
                        item['customer']['name'],
                        item['skuMaster']['code'],
                        item['skuMaster']['name'],
                        item['currency']['code'],
                        item['eanUpc'],
                        item['uom']['code'],
                        item['totalQty'],
                        item['grossWeight'],
                        item['volume'],
                        item['totalValue']
                    ]
                    table_data.append(row)
        
                # Convert to pandas DataFrame
                df = pd.DataFrame(table_data, columns=headers)

                chart_link = chat_with_llm(df,question)                  
        
                return chart_link
            else:
                return "There are no inventory details for the warehouse you have given."
        else:
            return "Please provide a warehouse name available in the database."

def chat_with_llm(df,question):
    sdf = SmartDataframe(df, config={"llm": llm_chart})
    llm_response = sdf.chat(question)
    return llm_response

def bind_llm(llm, tools,prompt_template):
    llm = llm.bind()
    agent = create_tool_calling_agent(llm, tools, ChatPromptTemplate.from_template(prompt_template))
    agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
    return agent_executor

# Define input and output models using Pydantic
class QueryInput(BaseModel):
    question: str = Field(
        description="The question to be answered by appropriate tool. Please follow the instructions. For API tool, do not send the question as it is. Please send the ASN id.")# Invoke datavisulaization tool by processing the user question and send two inputs to the tool. One input will be the warehouse name and another input to the tool will be the entire user_question itself. Please join those two strings and send them as a single input string with ':' as delimiter")
    # config: dict = Field(default={}, description="Optional configuration for the database query.")


# Define the output model for database queries
class QueryOutput(BaseModel):
    result: str = Field(...,
                        description="Display the answer based on the prompts given in each tool. For dataVisualization tool, it sends a image file as output. Please give the image file path only to the gr.Image. For DocumentData tool, Please provide a complete and concise response within 200 words and Ensure that the response is not truncated and covers the essential points.")


# Wrap the function with StructuredTool for better parameter handling
tools = [
    
    StructuredTool(
        func=get_ASN_data,
        name="APIData",
        args_schema=QueryInput,
        output_schema=QueryOutput,
        description="Tool to get details of ASN api. ASN id will be in the input with the format of first three letters as ASN and it is followed by 11 digit numeral. Pass only the id as input.  Do not send the complete user question to the tool. If there are any other queries related to ASN without ASN id, please use the document tool."
    ),
    StructuredTool(
        func=document_data_tool,
        name="DocumentData",
        args_schema=QueryInput,
        output_schema=QueryOutput,
        description="You are an AI assistant trained to help with warehouse management questions based on a detailed document about our WMS. The document covers various processes such as ASN handling, purchase orders, cross docking, appointment scheduling for shipments, and yard management. Please provide a complete and concise response within 200 words and Ensure that the response is not truncated and covers the essential points. "
    ),
    StructuredTool(
        func=database_tool,
        name="DatabaseQuery",
        args_schema=QueryInput,
        output_schema=QueryOutput,
        description="Tool to query the database based on structured input."
    ),
    StructuredTool(
        func=inventory_report,
        name="dataVisualization",
        args_schema=QueryInput,
        output_schema=QueryOutput,
        description=""" Tool to generate a visual chart output for a particular warehouse based on the provided question.
        This tool processes the user question to identify the warehouse name and the specific request. If the user specifies
        an email, include the email in the input. The input format should be: 'warehouse name: user question: email (if any)'.
        The tool generates the requested chart and sends it to the provided email if specified.
        Examples:
        1. Question without email, without warehouse: "Analyze item name and quantity in a bar chart in warehouse"
          Input to tool: "I want to analyze item name and quantity in a bar chart"
        2. Question with email: "Analyze item name and quantity in a bar chart in warehouse Allcargo Logistics and send email to example@example.com"
          Input to tool: "Allcargo Logistics: I want to analyze item name and quantity in a bar chart: example@example.com"
        """
    )
]

prompt_template = f"""You are an assistant that helps with database queries, API information, and document retrieval.  Your job is to provide clear, complete, and detailed responses to the following queries. Please give the output response in an user friendly way and remove "**" from the response. For example, document related queries can be answered in a clear and concise way with numbering and not as a paragraph. Database related queries should be answered with proper indentation and use numbering for the rows. ASN id related queries should be answered with proper indentation and use numbering for the rows.

For ASN id related questions, if the user specifies an ASN id, provide the information from the api tool. Pass only the id as input to the tool. Do not pass the entire question as input to the tool. If the details are not found, say it in a clear and concise way.
You are an AI assistant trained to help with warehouse management questions based on a detailed document about our WMS. The document covers various processes such as ASN handling, purchase orders, cross docking, appointment scheduling for shipments, and yard management. Please provide a complete and concise response within 200 words and Ensure that the response is not truncated and covers the essential points. When answering, focus on providing actionable insights and clear explanations related to the specific query.  Please remove "**" from the response.
For SQL database-related questions, only use the fields available in the warehouse schema, including tables such as customer_master, efs_company_master, efs_group_company_master, efs_region_master, party_address_detail, wms_warehouse_master.
For datavisualization, user will ask for inventory report of a particular warehouse. Your job is to return the image path to chat interface and display the image as output.
{{agent_scratchpad}}
Here is the information you need to process:
Question: {{input}}"""
agent_executor = bind_llm(llm,tools,prompt_template)

def ensure_temp_chart_dir():
    temp_chart_dir = os.getenv("IMAGE_MAIN_URL")
    if not os.path.exists(temp_chart_dir):
        os.makedirs(temp_chart_dir)

def clean_gradio_tmp_dir():
    tmp_dir = os.getenv("IMAGE_GRADIO_PATH")
    if os.path.exists(tmp_dir):
        try:
            shutil.rmtree(tmp_dir)
        except Exception as e:
            print(f"Error cleaning up /tmp/gradio/ directory: {e}")


# Define the interface function
max_iterations = 5
iterations = 0


def handle_query(user_question, chatbot, audio=None):

    """
    Function to handle the processing of user input with `AgentExecutor.invoke()`.
    """
    global current_event, stop_event

    # Clear previous stop event and current_event
    stop_event.clear()

    if current_event and not current_event.done():
        chatbot.append(("","A query is already being processed. Please stop it before starting a new one."))
        return gr.update(value=chatbot)
       
    # Start the processing in a new thread
    current_event = executor.submit(answer_question_thread, user_question, chatbot)
    
    # Periodically check if current_event is done
    while not current_event.done():
        if stop_event.is_set():
            #current_event.task.cancel()  # Attempt to cancel the current_event         
            current_event.set_result((user_question, "Sorry, we encountered an error while processing your request. Please try after some time."))
            current_event.cancel()  # Attempt to cancel the current_event
            executor.shutdown(wait=False)  # Shutdown the executor
            print("Current event cancelled")
            print(current_event.cancelled())
           
            chatbot.append((user_question, "Sorry, we encountered an error while processing your request. Please try after some time."))
            return gr.update(value=chatbot)
            
        time.sleep(1)  # Wait for 1 second before checking again

    if current_event.cancelled():
        chatbot.append((user_question, "Sorry, we encountered an error while processing your request. Please try after some time."))
        return gr.update(value=chatbot)
    else:
        try:
            user_question1, response_text1 = current_event.result()  # Get the result of the completed current_event
            print("output")
            print(user_question1) 
            print(response_text1)
            chatbot.append((user_question1, response_text1))
            return gr.update(value=chatbot)
        except Exception as e:
            print(f"Error occurred: {e}")
            chatbot.append((user_question, "Sorry, we encountered an error while processing your request. Please try after some time."))
            return gr.update(value=chatbot)


def stop_processing(chatbot):
    """
    Stops the current processing if it's running.
    """
    global current_event, stop_event
    if current_event and not current_event.done():
        stop_event.set()  # Signal the process to stop
        current_event.cancel()  # Attempt to cancel the current_event
    chatbot.append(("Sorry, we encountered an error while processing your request. Please try after some time.",""))
    return gr.update(value=chatbot)

# This function is for agent executor invoke with the option of stop
def answer_question_thread(user_question, chatbot,audio=None):
     
    global iterations
    iterations = 0
    # Ensure the temporary chart directory exists
    # ensure_temp_chart_dir()
    # Clean the /tmp/gradio/ directory
    # clean_gradio_tmp_dir()
    # Handle audio input if provided
    """
    if audio is not None:
        sample_rate, audio_data = audio
        audio_segment = AudioSegment(
            audio_data.tobytes(),
            frame_rate=sample_rate,
            sample_width=audio_data.dtype.itemsize,
            channels=1
        )
        with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio_file:
            audio_segment.export(temp_audio_file.name, format="wav")
            temp_audio_file_path = temp_audio_file.name

        recognizer = sr.Recognizer()
        with sr.AudioFile(temp_audio_file_path) as source:
            audio_content = recognizer.record(source)
        try:
            user_question = recognizer.recognize_google(audio_content)
        except sr.UnknownValueError:
            user_question = "Sorry, I could not understand the audio."
        except sr.RequestError:
            user_question = "Could not request results from Google Speech Recognition service."
        """

    while iterations < max_iterations:

        response = agent_executor.invoke({"input": user_question}, config={"callbacks": [langfuse_handler]}, early_stopping_method="generate")
        
        if isinstance(response, dict):
            response_text = response.get("output", "")
        else:
            response_text = response
        if "invalid" not in response_text.lower():
            break
        iterations += 1

    if iterations == max_iterations:
        return user_question , "Sorry, I couldn't complete your request" #"The agent could not generate a valid response within the iteration limit."

    if os.getenv("IMAGE_PATH") in response_text:
        # Open the image file
        img = Image.open(os.getenv("IMAGE_PATH"))

        # Convert the PIL Image to a base64 encoded string
        buffered = BytesIO()
        img.save(buffered, format="PNG")
        img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")

        img = f'<img src="data:image/png;base64,{img_str}" style="width:450px; height:400px;">'

        response_text = response.get("output", "").split(".")[0] + img

        email_pattern = r'[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}'
        match = re.search(email_pattern, user_question)
        if match:
            user_email = match.group()  # Return the matched email

            # email send
            if len(user_email) > 0:
                # Send email with the chart image attached
                send_email_with_attachment_mailjet(
                    recipient_email=user_email,
                    subject="Warehouse Inventory Report",
                    body=response.get("output", "").split(".")[0] + ". This is an auto-generated email containing a chart created using Generative AI.",
                    # attachment_path=chart_path
                    attach_img_base64=img_str)
                

        if "send email to" in user_question:
            try:
                os.remove(img)  # Clean up the temporary image file
            except Exception as e:
                print(f"Error cleaning up image file: {e}")
            except Exception as e:
                print(f"Error loading image file: {e}")
                response_text =  "Chart generation failed. Please try again."

        return user_question, response_text
    else:
        return user_question, response_text
    # response_text = response_text.replace('\n', ' ').replace('  ', ' ').strip()
    # return response_text


# without forceful stop option
def answer_question(user_question, chatbot, audio=None):
     
    global iterations
    iterations = 0
    # Ensure the temporary chart directory exists
    # ensure_temp_chart_dir()
    # Clean the /tmp/gradio/ directory
    # clean_gradio_tmp_dir()
    # Handle audio input if provided
    if audio is not None:
        sample_rate, audio_data = audio
        audio_segment = AudioSegment(
            audio_data.tobytes(),
            frame_rate=sample_rate,
            sample_width=audio_data.dtype.itemsize,
            channels=1
        )
        with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio_file:
            audio_segment.export(temp_audio_file.name, format="wav")
            temp_audio_file_path = temp_audio_file.name

        recognizer = sr.Recognizer()
        with sr.AudioFile(temp_audio_file_path) as source:
            audio_content = recognizer.record(source)
        try:
            user_question = recognizer.recognize_google(audio_content)
        except sr.UnknownValueError:
            user_question = "Sorry, I could not understand the audio."
        except sr.RequestError:
            user_question = "Could not request results from Google Speech Recognition service."

    while iterations < max_iterations:

        response = agent_executor.invoke({"input": user_question}, config={"callbacks": [langfuse_handler]})

        if isinstance(response, dict):
            response_text = response.get("output", "")
        else:
            response_text = response
        if "invalid" not in response_text.lower():
            break
        iterations += 1

    if iterations == max_iterations:
        return "The agent could not generate a valid response within the iteration limit."
    
        

    if os.getenv("IMAGE_PATH") in response_text:
        # Open the image file
        img = Image.open(os.getenv("IMAGE_PATH"))

        # Convert the PIL Image to a base64 encoded string
        buffered = BytesIO()
        img.save(buffered, format="PNG")
        img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")

        img = f'<img src="data:image/png;base64,{img_str}" style="width:450px; height:400px;">'
        
        chatbot.append((user_question, img))

        email_pattern = r'[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}'
        match = re.search(email_pattern, user_question)
        if match:
            user_email = match.group()  # Return the matched email

            # email send
            if len(user_email) > 0:
                # Send email with the chart image attached
                send_email_with_attachment_mailjet(
                    recipient_email=user_email,
                    subject="Warehouse Inventory Report",
                    body=response.get("output", "").split(".")[0],
                    # attachment_path=chart_path
                    attachment_path=img_str)
                
                # Send email with the chart image attached
                """send_email_with_attachment(
                    recipient_email=user_email,
                    subject="Warehouse Inventory Report",
                    body=response.get("output", "").split(":")[0],
                    # attachment_path=chart_path
                    attachment_path=os.getenv("IMAGE_PATH")
                )"""

        if "send email to" in user_question:
            try:
                os.remove(img)  # Clean up the temporary image file
            except Exception as e:
                print(f"Error cleaning up image file: {e}")
            except Exception as e:
                print(f"Error loading image file: {e}")
                chatbot.append((user_question, "Chart generation failed. Please try again."))
        return gr.update(value=chatbot)
    
    else:
        chatbot.append((user_question, response_text))
        return gr.update(value=chatbot)
    

def submit_feedback(feedback, chatbot, request: gr.Request):
    gr.Info("Thank you for your feedback.")
    #save feedback with user question and response in database
    save_feedback(request.username,chatbot[-1][0], chatbot[-1][1], feedback)
    feedback_response = "User feedback: " + feedback
    return chatbot + [(feedback_response, None)], gr.update(visible=False), gr.update(visible=False)


# Function to connect to MySQL database
def connect_to_db():
    return mysql.connector.connect(
        host=DB_HOST,
        user=DB_USER,
        password=DB_PASSWORD,
        database=DB_NAME
    )

# Function to save feedback to the database
def save_feedback(username, user_question, user_response, feedback):
    try:
        conn = connect_to_db()
        cursor = conn.cursor()
        query = "INSERT INTO user_feedback (username, question, response, feedback) VALUES (%s, %s, %s, %s)"
        cursor.execute(query, (username, user_question, user_response, feedback))
        conn.commit()
    except mysql.connector.Error as err:
        print(f"Error: {err}")
    finally:
        if cursor:
            cursor.close()
        if conn:
            conn.close()

def handle_dislike(data: gr.LikeData):
    if not data.liked:
        print("downvote")
        gr.Info("Please enter your feedback.")
        return gr.update(visible=True), gr.update(visible=True)
    else:
        print("upvote")
        return gr.update(visible=False), gr.update(visible=False)

# greet with user name on successful login
def update_message(request: gr.Request):
    return f"<h2 style=' font-family: Calibri;'>Welcome, {request.username}</h4>"

# Function to generate a 50-word summary of the newly uploaded doc using OpenAI
def generate_summary(text):
    prompt = (
         "You are an AI that helps with document analysis. Please provide a concise title and a summary of the following document. "
        "The summary should be about 50 words and include key details that can help answer questions accurately:\n\n"
        f"{text}\n\nTitle : Summary"
    )
    # Call the OpenAI API to generate a summary    
    response = openai.chat.completions.create(
        messages=[
            {
                "role": "user",
                "content": prompt,
            }
        ],
        model="gpt-4o-mini",
    )
    # Extract the title and summary from the response
    response_content = response.choices[0].message.content
    lines = response_content.split("\n")
     # Extract title
    title_line = lines[0]
    title = title_line.split("**Title:**")[-1].strip()
    
    # Extract summary
    summary_line = lines[2]
    summary = summary_line.split("**Summary:**")[-1].strip()

    return title, summary
#function to handle file upload decide whether excel or doc is uploaded and respective tool will be created with appropriate prompts at runtime
def upload_file(filepath):
    global vector_store1, file_extension
    
    # Get the file extension
    _, file_extension = os.path.splitext(filepath)
    
    if file_extension == ".pdf":
        texts1 = load_and_split_pdf(filepath)
       
        vector_store1 = create_vector_store(texts1)   
        # Generate a 50-word summary from the extracted text
        title, summary = generate_summary(texts1)        
        return title, summary, file_extension
    elif file_extension == ".xlsx":
        title, prompt = process_excel(filepath)        
        return title, prompt

def generate_example_questions(sheet_name, column_headers):
    """
    Generates natural language questions based on column headers.
    
    Args:
        sheet_name (str): The name of the Excel sheet.
        column_headers (list): List of column headers from the sheet.
    
    Returns:
        questions (list): List of generated questions based on the columns.
    """
    questions = []

    # Check for typical columns and create questions
    if 'Product Name' in column_headers or 'Product' in column_headers:
        questions.append(f"What is the total sales for a specific product in {sheet_name}?")
            
    if 'Sales Amount' in column_headers or 'Amount' in column_headers:
        questions.append(f"What is the total sales amount for a specific region in {sheet_name}?")
            
    if 'Region' in column_headers:
        questions.append(f"Which region had the highest sales in {sheet_name}?")
    
    if 'Date' in column_headers:
        questions.append(f"What were the total sales during a specific month in {sheet_name}?")
    
    if 'Price' in column_headers:
        questions.append(f"What is the price of a specific product in {sheet_name}?")
    
    if any(fnmatch.fnmatch(header, 'Employee*') for header in column_headers):
        questions.append(f"What are the details of the distinct broker names?")
        
    return questions

def generate_prompt_from_excel_file(df_dict):
    """
    Generates a prompt from an Excel file containing multiple sheets.
    
    Args:
        excel_file_path (str): The path to the Excel file.
    
    Returns:
        prompt (str): A detailed prompt including sheet names, column headers, sample data, 
                      and example questions for each sheet.
    """

    # Initialize prompt with basic structure
    prompt = "You have been provided with an Excel file containing data in several sheets.\n"
    
    # Loop through each sheet to extract column headers and sample data
    for sheet_name, sheet_df in df_dict.items():
        # Extract column headers
        column_headers = list(sheet_df.columns)
        
        # Get a sample of the data (first few rows)
        sample_data = sheet_df.head(3).to_string(index=False)

        # Add sheet details to the prompt
        prompt += f"For the sheet '{sheet_name}', the column headers are:"
        prompt += f"{', '.join(column_headers)}\n\n"
        #prompt += f"Example data from sheet '{sheet_name}':\n"
        #prompt += f"{sample_data}\n\n"

        # Generate example natural language questions based on columns
        example_questions = generate_example_questions(sheet_name, column_headers)
        #prompt += "### Example Questions:\n"
        #for question in example_questions:
         #   prompt += f"- {question}\n"
        #prompt += "\n"

    # Finalize the prompt with function call description

    prompt += f"- Query: A natural language question (e.g., List all the employees with broker name ADP or Alerus). The question should be sent as 'What are the employee details with broker name ADP or Alerus :'."
    prompt += f"""Output :  {docstatus}. Here is the sample table:
            {sample_table}. 
            """

    prompt += f"- Query: A natural language question with request to create LOA document (e.g., can you create LOA document for all the employees with broker name ADP or Alerus). The question should be sent as 'What are the employee details with broker name ADP or Alerus : LOA document'."
    prompt += f"""Output:  {docstatus}. Here is the sample table:
            {sample_table}.             
            If there is any error, please display the message returned by the function as response. """


    return "Excel data", prompt

# Function to handle "Add to RedMindGPT" button click
def add_to_redmindgpt(title, summary):
    """
    Adds a document or Excel file to the RedmindGPT system and configures the appropriate runtime tool for handling related queries.
    Parameters:
    title (str): The title of the document or Excel file.
    summary (str): A brief summary of the document or Excel file.
    Returns:
    str: A message indicating whether the file has been added successfully.
    Behavior:
    - If the file extension is ".pdf", it sets up a runtime tool for handling document-related queries.
    - If the file extension is ".xlsx", it sets up a runtime tool for handling Excel data-related queries.
    - Configures the prompt template for the agent executor based on the file type.
    - Adds the configured runtime tool to the list of tools used by the agent executor.
    """
    
    global agent_executor, file_extension
    
    if file_extension == ".pdf":
        run_time_tool_summary = f"For {title} document related questions, Please refer runtimeDocumentData tool. {summary}. Please provide a complete and concise response within 200 words and Ensure that the response is not truncated and covers the essential points."
  
        run_time_tool = StructuredTool(
            func=document_data_tool_runtime,
            name="runtimeDocumentData",
            args_schema=QueryInput,
            output_schema=QueryOutput,
            description=f"You are an AI assistant trained to help with the questions based on the uploaded document {title}. {summary}. Please provide a complete and concise response within 200 words and Ensure that the response is not truncated and covers the essential points."
        )
       
        # Add the new tool to the beginning
        tools.insert(0, run_time_tool)
               
        prompt_template = f"""You are an assistant that helps with database queries, API information, and document retrieval.  Your job is to provide clear, complete, and detailed responses to the following queries. Please give the output response in an user friendly way and remove "**" from the response. For example, document related queries can be answered in a clear and concise way with numbering and not as a paragraph. Database related queries should be answered with proper indentation and use numbering for the rows. ASN id related queries should be answered with proper indentation and use numbering for the rows.
        {run_time_tool_summary}
        For ASN id related questions, if the user specifies an ASN id, provide the information from the api tool. Pass only the id as input to the tool. Do not pass the entire question as input to the tool. If the details are not found, say it in a clear and concise way.
        You are an AI assistant trained to help with warehouse management questions based on a detailed document about our WMS. The document covers various processes such as ASN handling, purchase orders, cross docking, appointment scheduling for shipments, and yard management. Please provide a complete and concise response within 200 words and Ensure that the response is not truncated and covers the essential points. When answering, focus on providing actionable insights and clear explanations related to the specific query.  Please remove "**" from the response.
        For SQL database-related questions, only use the fields available in the warehouse schema, including tables such as customer_master, efs_company_master, efs_group_company_master, efs_region_master, party_address_detail, wms_warehouse_master.
        For datavisualization, user will ask for inventory report of a particular warehouse. Your job is to return the image path to chat interface and display the image as output.
    
        {{agent_scratchpad}}
        Here is the information you need to process:
        Question: {{input}}"""
        agent_executor = bind_llm(llm,tools,prompt_template)
        return f"File has been added successfully."
    elif file_extension == ".xlsx":
        run_time_excel_tool_summary = f"For {title}  related questions, Please refer runtimeExcelData tool. {summary}. Display the response only in the format as mentioned in the tool description. "
   
        run_time_excel_tool = StructuredTool(
            func=chat_with_excel_data_dataframe,
            name="runtimeExcelData",
            args_schema=QueryInput,
            output_schema=QueryOutput,
            description=f"""You are an AI assistant trained to handle Excel data and return meaningful insights. If user query is given with an option of generating the document with the result set dataframe, pass two inputs to the tool. First input is the user query and the second input will be the phrase "create document". display the response only in the below format. 
             {docstatus}. Here is the sample data:
            {sample_table}.
            Please provide the total rows count from the {total_rows} values returned by the function and not the count of sample table rows. If there is any error, please display the message returned by the function as response. """
        )
       
        # Add the new tool to the beginning
        tools.insert(0, run_time_excel_tool)
            
        prompt_template = f"""You are an assistant that helps with database queries, API information, and document retrieval.  Your job is to provide clear, complete, and detailed responses to the following queries. Please give the output response in an user friendly way and remove "**" from the response. For example, document related queries can be answered in a clear and concise way with numbering and not as a paragraph. Database related queries should be answered with proper indentation and use numbering for the rows. ASN id related queries should be answered with proper indentation and use numbering for the rows.
        {run_time_excel_tool_summary}
        For ASN id related questions, if the user specifies an ASN id, provide the information from the api tool. Pass only the id as input to the tool. Do not pass the entire question as input to the tool. If the details are not found, say it in a clear and concise way.
        You are an AI assistant trained to help with warehouse management questions based on a detailed document about our WMS. The document covers various processes such as ASN handling, purchase orders, cross docking, appointment scheduling for shipments, and yard management. Please provide a complete and concise response within 200 words and Ensure that the response is not truncated and covers the essential points. When answering, focus on providing actionable insights and clear explanations related to the specific query.  Please remove "**" from the response.
        For SQL database-related questions, only use the fields available in the warehouse schema, including tables such as customer_master, efs_company_master, efs_group_company_master, efs_region_master, party_address_detail, wms_warehouse_master.
        For datavisualization, user will ask for inventory report of a particular warehouse. Your job is to return the image path to chat interface and display the image as output.
    
        {{agent_scratchpad}}
        Here is the information you need to process:
        Question: {{input}}"""
        agent_executor = bind_llm(llm,tools,prompt_template)
        return f"File has been added successfully."

def process_excel(file):
    global excel_dataframe
    # Check if the file is None
    if file is None:
        return "Excel file", "Your excel does not have values. Please upload a different file."  # Return an empty dataframe if no file is uploaded
    else:
        # Read the uploaded Excel file
        excel_dataframe = pd.read_excel(file.name, sheet_name=None)  # 'file.name' to get the actual file path
        
        #to get title and summary of excel file
        title, prompt = generate_prompt_from_excel_file(excel_dataframe)
        excel_dataframe = pd.read_excel(file.name)

        return title, prompt  # Return the success message.

def chat_with_excel_data(question):
    global excel_dataframe
    response_dataframe = chat_with_llm(excel_dataframe,question)
    print(response_dataframe)
    return response_dataframe

def chat_with_excel_data_dataframe(question):
    isDataFrame = True
    print(f"question for excel data frame  :  {question}")
    if "LOA" in question:
        #question = question.replace("create document", "").strip()
        create_document = True
    else:
        create_document = False
    print(f"create document : {create_document}")
    response_dataframe = chat_with_excel_data(question)
    if isinstance(response_dataframe, pd.DataFrame) == False:          
        
        print("The result is not a DataFrame.")
        if ":" in response_dataframe:
            isDataFrame = False
            names_part = response_dataframe.split(":", 1)[1]  # Get everything after the colon and space

            # Split the names by commas to create a list
            names = names_part.split(",")

            # Convert the list of names to a DataFrame
            response_dataframe = pd.DataFrame(names, columns=["Result"])
            
        
    #handle large dataset
    response = handle_large_dataset(response_dataframe, create_document,isDataFrame) 
      
    return response

    #Save the respnse dataframe to an Excel file in hostinger so that the user can download it
    #save_file_path = "dataframe_output.xlsx"
    #response_dataframe.to_excel(save_file_path, index=False)
    #save_file_to_hostinger(save_file_path)
    
    # Check if the response is a DataFrame
    """if isinstance(response_dataframe, pd.DataFrame):
        # Convert DataFrame to HTML for display
        df_html = response_dataframe.to_html(classes='dataframe', index=False)   
        print(f"dfhtml:{df_html}")     
        return df_html"""
    
    #return response_dataframe.head(10)#, len(response_dataframe)

def save_file_to_hostinger(save_file_path):
    from ftplib import FTP
    # Step 2: FTP server credentials
    ftp_host = 'ftp.redmindtechnologies.com'  # Replace with your FTP server address
    ftp_user = 'u852023448.redmindGpt'         # Replace with your FTP username
    ftp_pass = 'RedMind@505'         # Replace with your FTP password
    remote_file_path = '/RedMindGPT/output.xlsx'  # Replace with the desired path on the server

    # Create an FTP connection
    ftp = FTP(ftp_host)
    ftp.login(ftp_user, ftp_pass)

    # Open the local file and upload it to the server
    with open(save_file_path, 'rb') as file:
        ftp.storbinary(f'STOR {remote_file_path}', file)

    print(f'File {save_file_path} uploaded to {remote_file_path} on server.')

    # Close the FTP connection
    ftp.quit()

def handle_large_dataset(df, create_document,isDataFrame):
    
    total_rows = len(df)
    #print(df)
    print(f"Total rows: {total_rows}")
    
    docstatus = f"Download the complete dataset <a href='https://huggingface.co/spaces/Redmind/NewageNXTGPT/blob/main/assets/output.xlsx' download> here.</a>.There are total of {total_rows} rows."
    #docstatus = f"Download the complete dataset <a href='https://redmindtechnologies.com/RedMindGPT/output.xlsx' download> here.</a>.There are total of {total_rows} rows."
    if total_rows < 4000:

        # 1. Limit to first 10 rows
       
        
        # 2. Handle missing values
        #limited_data.fillna("N/A", inplace=True)
        # 3. Drop the original first column
        if len(df.columns) > 1:
                # Skipping the original first column
                limited_data = df.head(3)
                limited_data_without_first_column = limited_data.iloc[:, 1:] 
        else:
                limited_data = df.head(20)
                limited_data_without_first_column = limited_data 
        #print( "range "+ len(limited_data_without_first_column))
        # 4. Add SNo (serial number) as the first column, starting from 1
        if isDataFrame :          
            
            limited_data_without_first_column.insert(0, 'SNo', range(1, len(limited_data_without_first_column) + 1))
        else:
            
            limited_data_without_first_column.insert(0, 'SNo', range(1, len(limited_data) + 1))
        # 3. Save the full dataset to a downloadable file
        
       
        import os

        # Get the current working directory
        current_folder = os.getcwd()
        

        
        file_path = os.path.join(current_folder, 'output_data.xlsx')
        df.to_excel(file_path, index=False)
        files = os.listdir(current_folder)
        print(f"Files in persistent storage: {files}")
        print(f"The current folder is: {current_folder}")
        """from huggingface_hub import Repository

        repo = Repository(
        local_dir="./",
        repo_type="space",
        repo_id="Redmind/NewageNXTGPT",
        use_auth_token=os.getenv("HF_TOKEN"),
        )"""
    
        file_path = "output_data.xlsx"
        #download_url = repo.get_download_url(file_path)

        from huggingface_hub import upload_file
        
        # Upload file to the Hugging Face Hub
        repo_id = "Redmind/NewageNXTGPT"
        #file_path = "/app/example.txt"  # Path to the file to upload
        from huggingface_hub import login

        # Login to Hugging Face Hub
        login(token=os.getenv("HF_TOKEN"))
        from huggingface_hub import HfApi
        api = HfApi()
        api.upload_file(path_or_fileobj=file_path, repo_id=repo_id, repo_type= "space", path_in_repo="data/output.xlsx")
        
        from huggingface_hub import hf_hub_url

        print(hf_hub_url(
            repo_id="Redmind/NewageNXTGPT", filename="data/output.xlsx"
            ))

        #print(f"Download the file here: {download_url}")
        #save_file_to_hostinger('output_data.xlsx')
        # 4. Create a summary and table of the first 10 rows for display
    
        #columns = list(df.columns)
        sample_table = limited_data_without_first_column.to_markdown()
        #print(sample_table)
        if create_document:
            #Logic to generate pdfs with employee name and account number
            for index, row in df.iterrows():
                # Create a PDF for each row
                create_pdf(row['Account Name'], row['Account ID'])
            create_document = False
            docstatus += f" {total_rows} documents are created successfully."
        print(sample_table)
        # 5. Return the summary and downloadable link
        #return f"""
        #There are a total of {total_rows} rows. Please download the complete dataset here: <a href="https://redmindtechnologies.com/RedMindGPT/output.xlsx" download>Download</a>. Here are the first 3 rows:
        #{sample_table} """

        return sample_table, docstatus

    else:
        return "Your query returns a large dataset which is not supported in the current version. Please try a different query."
def create_pdf(name,id):
   

    filled = FormWrapper("Goldman_LOA - Gold.pdf").fill(
        {
            "Title of Account": name,
            "Account Number": id,
            "Print Name and Title": name
        },
    )
    #output_file_name =  f"documents\\{name}.pdf"
    output_file_name =  f"{name}.pdf"
    with open(output_file_name, "wb+") as output:
        output.write(filled.read())

    repo_id = "Redmind/NewageNXTGPT"
    file_output=f"data/{output_file_name}"
    from huggingface_hub import HfApi
    api = HfApi()
    api.upload_file(path_or_fileobj=output_file_name, repo_id=repo_id, repo_type= "space", path_in_repo=file_output)
    return f"{output_file_name} is created successfully."
    

css = """

/* Example of custom button styling */
.gr-button {
    background-color: #6366f1; /* Change to your desired button color */
    color: white;
    border-radius: 8px; /* Make the corners rounded */
    border: none;
    padding: 10px 20px;
    font-size: 12px;
    cursor: pointer;
}

.gr-button:hover {
    background-color: #8a92f7; /* Darker shade on hover */
}

.gr-buttonbig {
    background-color: #6366f1; /* Change to your desired button color */
    color: white;
    border-radius: 8px; /* Make the corners rounded */
    border: none;
    padding: 10px 20px;
    font-size: 14px;
    cursor: pointer;
}

.gr-buttonbig:hover {
    background-color: #8a92f7; /* Darker shade on hover */
}

/* Customizing the Logout link to be on the right */
.logout-link {
    text-align: right;
    display: inline-block;
    width: 100%;
}

.logout-link a {
    color: #4A90E2; /* Link color */
    text-decoration: none;
    font-size: 16px;
}

.chatbot_gpt {
    height: 600px !important; /* Adjust height as needed */
}

.logout-link a:hover {
    text-decoration: underline; /* Underline on hover */
}

.message-buttons-right{
    display: none !important; 
}

body, .gradio-container {
    margin: 0;
    padding: 0;
}

/* Styling the tab header with a blue background */
.gr-tab-header {
    background-color: #4A90E2; /* Blue background for the tab header */
    padding: 10px;
    border-radius: 8px;
    color: white;
    font-size: 16px;
}

/* Styling the selected tab text color to be green */
.gr-tab-header .gr-tab-active {
    color: green; /* Change selected tab text to green */
}

/* Keep non-selected tab text color white */
.gr-tab-header .gr-tab {
    color: white;
}

/* Custom CSS for reducing the size of the video element */
.video-player {
    width: 500px;  /* Set a custom width for the video */
    height: 350px; /* Set a custom height for the video */
    margin: 0 auto; /* Center the video horizontally */
}
"""
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
    gr.HTML("<CENTER><B><h1 style='font-size:30px; font-family: Calibri;'>RedMindGPT</h1></B></CENTER>")
    # Logout link styled as text link in the right corner
    gr.Markdown("<div class='logout-link'><a href='/logout'><b>Logout</b></a></div>")

    # Unified RedMindGPT Interface
    with gr.Row():
        m = gr.Markdown()
        demo.load(update_message, None, m)

    # Buttons for sample queries
    with gr.Row():
        sample_button = gr.Button("What are the details of ASN24091600002", elem_classes="gr-buttonbig")
        sample_button1 = gr.Button("What are the active warehouses available", elem_classes="gr-buttonbig")
        sample_button2 = gr.Button("Explain Pre-Receiving Yard Management", elem_classes="gr-buttonbig")
        sample_button3 = gr.Button("can you generate a histogram chart with item name and customer for warehouse WH1000001", elem_classes="gr-buttonbig")
        sample_button4 = gr.Button("Analyze item name & quantity for different customers in a stacked bar chart for the warehouse WH1000001 & send email to meetarun@gmail.com", elem_classes="gr-button")

    # Chatbot component
    with gr.Row():
        chatbot = gr.Chatbot(label="Select any of the questions listed above to experience RedMindGPT in action.", elem_classes="chatbot_gpt")

    # Textbox for user questions
    with gr.Row():
        with gr.Column(scale=1):
            message = gr.Textbox(show_label=False, container=False, placeholder="Please enter your question")
            
            with gr.Row():
                feedback_textbox = gr.Textbox(visible=False, show_label=False, container=False, placeholder="Please enter your feedback.")
                submit_feedback_button = gr.Button("Submit Feedback", visible=False, elem_classes="gr-buttonbig")
        with gr.Column(scale=1):
            with gr.Row():
                button = gr.Button("Submit", elem_id="submit", elem_classes="gr-buttonbig")
                stop_button = gr.Button("Stop", elem_classes="gr-buttonbig")
    # Rearranged to place Upload Doc and Upload Excel in the same row
    with gr.Row():
        with gr.Column(scale=1):
            # File Upload Section
            gr.Markdown("**Add a document or Excel for natural language interaction.**")
        with gr.Column(scale=1):    
            u = gr.UploadButton("Upload a doc/excel", file_count="single", elem_classes="gr-buttonbig")
        #excel_file = gr.UploadButton("Upload an excel", file_count="single", elem_classes="gr-buttonbig", file_types=[".xlsx", ".xls"])
        with gr.Column(scale=1):
            add_button = gr.Button("Add to RedMindGPT", elem_classes="gr-buttonbig", visible=False)
    with gr.Row():
        title_textbox = gr.Textbox(label="Title", visible=False)
        summary_textarea = gr.Textbox(label="Summary", lines=5, visible=False)
        
    
    output_message = gr.Markdown()  # Markdown to display output message
    success_message = gr.Markdown()  # Placeholder for messages

   
    # Moved function calling lines to the end
    stop_button.click(stop_processing, [chatbot], [chatbot])

    button.click(handle_query, [message, chatbot], [chatbot])
    message.submit(handle_query, [message, chatbot], [chatbot])
    message.submit(lambda x: gr.update(value=""), None, [message], queue=False)
    button.click(lambda x: gr.update(value=''), [], [message])

    chatbot.like(handle_dislike, None, outputs=[feedback_textbox, submit_feedback_button])
    submit_feedback_button.click(submit_feedback, [feedback_textbox, chatbot], [chatbot, feedback_textbox, submit_feedback_button])
    submit_feedback_button.click(lambda x: gr.update(value=''), [], [feedback_textbox])

    sample_button.click(handle_query, [sample_button, chatbot], [chatbot])
    sample_button1.click(handle_query, [sample_button1, chatbot], [chatbot])
    sample_button2.click(handle_query, [sample_button2, chatbot], [chatbot])
    sample_button3.click(handle_query, [sample_button3, chatbot], [chatbot])
    sample_button4.click(handle_query, [sample_button4, chatbot], [chatbot])

    u.upload(upload_file, u, [title_textbox, summary_textarea])
    u.upload(lambda _: (gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)), None, [title_textbox, summary_textarea, add_button])
    add_button.click(add_to_redmindgpt, [title_textbox, summary_textarea], output_message)
    add_button.click(lambda _: (gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)), None, [title_textbox, summary_textarea, add_button])
    
demo.launch(auth=[("lakshmi", "redmind"), ("arun", "redmind"), ("NewageGlobal", "Newage123$")], auth_message="RedMindGPT", inline=False)