Spaces:
Running
Running
File size: 16,989 Bytes
d62ba4b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 |
import re
from collections import defaultdict
from math import sqrt
from typing import Any, Iterable, Self, cast
import torch
from torch import Tensor
from torch.nn import (
Module, ModuleList, Parameter, Buffer,
Linear, LayerNorm, RMSNorm, Dropout, Flatten,
init
)
from torch.nn.functional import pad, scaled_dot_product_attention
from einops import rearrange
from glu import SwiGLU
class IndexedAdd(Module):
def __init__(
self,
n_indices: int,
dim: int,
weight_shape: tuple[int, ...] | None = None,
*,
inplace: bool = False,
device: torch.device | str | None = None,
dtype: torch.dtype | None = None,
) -> None:
super().__init__()
self.dim = dim
self.inplace = inplace
self.index = Buffer(torch.empty(
2, n_indices,
device=device, dtype=torch.int32
))
self.weight = Parameter(torch.ones(
*(sz if sz != -1 else n_indices for sz in weight_shape),
device=device, dtype=dtype
)) if weight_shape is not None else None
def _save_to_state_dict(
self,
destination: dict[str, Any],
prefix: str,
keep_vars: bool
) -> None:
super()._save_to_state_dict(destination, prefix, keep_vars)
if keep_vars:
return
with torch.no_grad():
index_key = f"{prefix}index"
index = destination[index_key]
min_index = index.amin(None).item()
if min_index >= 0:
max_index = index.amax(None).item()
if max_index < (1 << 8):
destination[index_key] = index.to(dtype=torch.uint8)
elif max_index < (1 << 16):
destination[index_key] = index.to(dtype=torch.uint16)
@torch.no_grad()
def load_indices(self, indices: Iterable[tuple[int, int]], *, mean: bool = False) -> None:
if mean:
if self.weight is None:
raise ValueError("No weights to initialize with means.")
groups: dict[int, list[int]] = defaultdict(list)
idx = -1
for idx, (src, dst) in enumerate(indices):
self.index[0, idx] = src
self.index[1, idx] = dst
if mean:
groups[dst].append(idx)
if (idx + 1) != self.index.size(1):
raise IndexError(f"Expected {self.index.size(1)} indices, but got {idx + 1}.")
if not mean:
return
assert self.weight is not None
for idxs in groups.values():
if len(idxs) < 2:
continue
self.weight.index_fill_(
self.dim,
torch.tensor(idxs, device=self.weight.device, dtype=torch.int64),
1.0 / len(idxs)
)
def forward(self, dst: Tensor, src: Tensor) -> Tensor:
src = src.index_select(self.dim, self.index[0])
if self.weight is not None:
src.mul_(self.weight)
return (
dst.index_add_(self.dim, self.index[1], src)
if self.inplace else
dst.index_add(self.dim, self.index[1], src)
)
class BatchLinear(Module):
def __init__(
self,
batch_shape: tuple[int, ...] | int,
in_features: int,
out_features: int,
*,
bias: bool = False,
flatten: bool = False,
bias_inplace: bool = True,
device: torch.device | str | None = None,
dtype: torch.dtype | None = None,
) -> None:
super().__init__()
if isinstance(batch_shape, int):
batch_shape = (batch_shape,)
elif not batch_shape:
raise ValueError("At least one batch dimension is required.")
self.flatten = -(len(batch_shape) + 1) if flatten else 0
self.weight = Parameter(torch.empty(
*batch_shape, in_features, out_features,
device=device, dtype=dtype
))
bt = self.weight.flatten(end_dim=-3).mT
for idx in range(bt.size(0)):
init.kaiming_uniform_(bt[idx], a=sqrt(5))
self.bias = Parameter(torch.zeros(
*batch_shape, out_features,
device=device, dtype=dtype
)) if bias else None
self.bias_inplace = bias_inplace
def forward(self, x: Tensor) -> Tensor:
# ... B... 1 I @ B... I O -> ... B... O
x = torch.matmul(x.unsqueeze(-2), self.weight).squeeze(-2)
if self.bias is not None:
if self.bias_inplace:
x.add_(self.bias)
else:
x = x + self.bias
if self.flatten:
x = x.flatten(self.flatten)
return x
class Mean(Module):
def __init__(self, dim: tuple[int, ...] | int = -1, *, keepdim: bool = False) -> None:
super().__init__()
self.dim = dim
self.keepdim = keepdim
def forward(self, x: Tensor) -> Tensor:
return x.mean(self.dim, self.keepdim)
class _MidBlock(Module):
def __init__(
self,
attn_dim: int,
head_dim: int,
n_classes: int,
*,
ff_ratio: float,
ff_dropout: float,
q_cls_inplace: bool = True,
device: torch.device | str | None,
dtype: torch.dtype | None,
) -> None:
super().__init__()
self.head_dim = head_dim
self.q_cls_inplace = q_cls_inplace
hidden_dim = int(attn_dim * ff_ratio)
self.q_proj = Linear(
attn_dim, attn_dim, bias=False,
device=device, dtype=dtype
)
self.q_cls = Parameter(torch.zeros(
n_classes, attn_dim,
device=device, dtype=dtype
))
self.q_norm = RMSNorm(head_dim, eps=1e-5, elementwise_affine=False)
self.attn_out = Linear(
attn_dim, attn_dim, bias=False,
device=device, dtype=dtype
)
self.ff_norm = LayerNorm(
attn_dim,
device=device, dtype=dtype
)
self.ff_in = Linear(
attn_dim, hidden_dim * 2, bias=False,
device=device, dtype=dtype
)
self.ff_act = SwiGLU()
self.ff_drop = Dropout(ff_dropout)
self.ff_out = Linear(
hidden_dim, attn_dim, bias=False,
device=device, dtype=dtype
)
def _forward_q(self, x: Tensor) -> Tensor:
x = self.q_proj(x)
if self.q_cls_inplace:
x.add_(self.q_cls)
else:
x = x + self.q_cls
x = self.q_norm(x)
x = rearrange(x, "... s (h e) -> ... h s e", e=self.head_dim)
return x
def _forward_attn(self, x: Tensor, k: Tensor, v: Tensor, attn_mask: Tensor | None) -> Tensor:
a = scaled_dot_product_attention(
self._forward_q(x), k, v,
attn_mask=attn_mask
)
a = rearrange(a, "... h s e -> ... s (h e)")
a = self.attn_out(a)
return x + a
def _forward_ff(self, x: Tensor) -> Tensor:
f = self.ff_norm(x)
f = self.ff_in(f)
f = self.ff_act(f)
f = self.ff_drop(f)
f = self.ff_out(f)
return x + f
def forward(self, x: Tensor, k: Tensor, v: Tensor, attn_mask: Tensor | None = None) -> Tensor:
x = self._forward_attn(x, k, v, attn_mask)
x = self._forward_ff(x)
return x
class HydraPool(Module):
def __init__(
self,
attn_dim: int,
head_dim: int,
n_classes: int,
*,
mid_blocks: int = 0,
roots: tuple[int, int, int] = (0, 0, 0),
ff_ratio: float = 3.0,
ff_dropout: float = 0.0,
input_dim: int = -1,
output_dim: int = 1,
device: torch.device | str | None = None,
dtype: torch.dtype | None = None,
) -> None:
super().__init__()
if input_dim < 0:
input_dim = attn_dim
assert attn_dim % head_dim == 0
n_heads = attn_dim // head_dim
self.n_classes = n_classes
self.head_dim = head_dim
self.output_dim = output_dim
self._has_roots = False
self._has_ff = False
self.q: Parameter | Buffer
self._q_normed: bool | None
if roots != (0, 0, 0):
self._has_roots = True
n_roots, n_classroots, n_subclasses = roots
if n_classroots < n_roots:
raise ValueError("Number of classroots cannot be less than the number of roots.")
self.cls = Parameter(torch.randn(
n_heads, n_classes, head_dim,
device=device, dtype=dtype
))
self.roots = Parameter(torch.randn(
n_heads, n_roots, head_dim,
device=device, dtype=dtype
)) if n_roots > 0 else None
self.clsroots = IndexedAdd(
n_classroots, dim=-2, weight_shape=(n_heads, -1, 1),
device=device, dtype=dtype
) if n_classroots > 0 else None
self.clscls = IndexedAdd(
n_subclasses, dim=-2, weight_shape=(n_heads, -1, 1),
inplace=True, device=device, dtype=dtype
) if n_subclasses > 0 else None
self.q = Buffer(torch.empty(
n_heads, n_classes, head_dim,
device=device, dtype=dtype
))
self._q_normed = None
else:
self.q = Parameter(torch.randn(
n_heads, n_classes, head_dim,
device=device, dtype=dtype
))
self._q_normed = False
self.kv = Linear(
input_dim, attn_dim * 2, bias=False,
device=device, dtype=dtype
)
self.qk_norm = RMSNorm(
head_dim, eps=1e-5, elementwise_affine=False
)
if ff_ratio > 0.0:
self._has_ff = True
hidden_dim = int(attn_dim * ff_ratio)
self.ff_norm = LayerNorm(
attn_dim,
device=device, dtype=dtype
)
self.ff_in = Linear(
attn_dim, hidden_dim * 2, bias=False,
device=device, dtype=dtype
)
self.ff_act = SwiGLU()
self.ff_drop = Dropout(ff_dropout)
self.ff_out = Linear(
hidden_dim, attn_dim, bias=False,
device=device, dtype=dtype
)
elif mid_blocks > 0:
raise ValueError("Feedforward required with mid blocks.")
self.mid_blocks = ModuleList(
_MidBlock(
attn_dim, head_dim, n_classes,
ff_ratio=ff_ratio, ff_dropout=ff_dropout,
device=device, dtype=dtype
) for _ in range(mid_blocks)
)
self.out_proj = BatchLinear(
n_classes, attn_dim, output_dim * 2,
device=device, dtype=dtype
)
self.out_act = SwiGLU()
@property
def has_roots(self) -> bool:
return self._has_roots
def get_extra_state(self) -> dict[str, Any]:
return { "q_normed": self._q_normed }
def set_extra_state(self, state: dict[str, Any]) -> None:
self._q_normed = state["q_normed"]
def create_head(self) -> Module:
if self.output_dim == 1:
return Flatten(-2)
return Mean(-1)
def train(self, mode: bool = True) -> Self:
super().train(mode)
if mode:
if self._has_roots:
self._q_normed = None
else:
self._q_normed = False
else:
if self._has_roots:
self._cache_query()
return self
def inference(self) -> Self:
super().train(False)
self._cache_query()
if self._has_roots:
self._has_roots = False
self.q = Parameter(self.q)
del self.cls, self.roots, self.clsroots, self.clscls
return self
def _cache_query(self) -> None:
assert not self.training
if self._q_normed:
return
with torch.no_grad():
self.q.to(device=self.kv.weight.device)
self.q.copy_(self._forward_q())
self._q_normed = True
def _forward_q(self) -> Tensor:
match self._q_normed:
case None:
assert self._has_roots
if self.roots is not None:
q = self.qk_norm(self.roots)
q = self.clsroots(self.cls, q)
else:
q = self.cls
if self.clscls is not None:
q = self.clscls(q, q.detach())
q = self.qk_norm(q)
return q
case False:
assert not self._has_roots
return self.qk_norm(self.q)
case True:
return self.q
def _forward_attn(self, x: Tensor, attn_mask: Tensor | None) -> tuple[Tensor, Tensor, Tensor]:
q = self._forward_q().expand(*x.shape[:-2], -1, -1, -1)
x = self.kv(x)
k, v = rearrange(x, "... s (n h e) -> n ... h s e", n=2, e=self.head_dim).unbind(0)
k = self.qk_norm(k)
x = scaled_dot_product_attention(q, k, v, attn_mask=attn_mask)
return rearrange(x, "... h s e -> ... s (h e)"), k, v
def _forward_ff(self, x: Tensor) -> Tensor:
if not self._has_ff:
return x
f = self.ff_norm(x)
f = self.ff_in(f)
f = self.ff_act(f)
f = self.ff_drop(f)
f = self.ff_out(f)
return x + f
def _forward_out(self, x: Tensor) -> Tensor:
x = self.out_proj(x)
x = self.out_act(x)
return x
def forward(self, x: Tensor, attn_mask: Tensor | None = None) -> Tensor:
x, k, v = self._forward_attn(x, attn_mask)
x = self._forward_ff(x)
for block in self.mid_blocks:
x = block(x, k, v, attn_mask)
x = self._forward_out(x)
return x
def prune_roots(self, retain_classes: set[int]) -> tuple[list[int], list[int]]:
if not self._has_roots or self.roots is None:
raise TypeError("No roots to prune.")
if self.clscls is not None:
raise TypeError("Subclass roots cannot be pruned.")
used_roots: set[int] = set()
used_clsroots: list[int] = []
assert self.clsroots is not None
clsroots = [
cast(list[int], clsroot.tolist())
for clsroot in self.clsroots.index.cpu().unbind(1)
]
for idx, (src, dest) in enumerate(clsroots):
if dest in retain_classes:
used_roots.add(src)
used_clsroots.append(idx)
sorted_roots = sorted(used_roots)
del used_roots
rootmap = {
root: idx
for idx, root in enumerate(sorted_roots)
}
clsmap = {
cls: idx
for idx, cls in enumerate(sorted(retain_classes))
}
for idx in used_clsroots:
src, dest = clsroots[idx]
self.clsroots.index[0, idx] = rootmap[src]
self.clsroots.index[1, idx] = clsmap[dest]
return sorted_roots, used_clsroots
@staticmethod
def for_state(
state_dict: dict[str, Any],
prefix: str = "",
*,
ff_dropout: float = 0.0,
device: torch.device | str | None = None,
dtype: torch.dtype | None = None,
) -> "HydraPool":
n_heads, n_classes, head_dim = state_dict[f"{prefix}q"].shape
attn_dim = n_heads * head_dim
roots_t = state_dict.get(f"{prefix}roots")
clsroots_t = state_dict.get(f"{prefix}clsroots.index")
clscls_t = state_dict.get(f"{prefix}clscls.index")
roots = (
roots_t.size(1) if roots_t is not None else 0,
clsroots_t.size(1) if clsroots_t is not None else 0,
clscls_t.size(1) if clscls_t is not None else 0
)
input_dim = state_dict[f"{prefix}kv.weight"].size(1)
output_dim = state_dict[f"{prefix}out_proj.weight"].size(2) // 2
# avoid off-by-one issue due to truncation
ffout_t = state_dict.get(f"{prefix}ff_out.weight")
hidden_dim = ffout_t.size(1) + 0.5 if ffout_t is not None else 0
ff_ratio = hidden_dim / attn_dim
pattern = re.compile(rf"^{re.escape(prefix)}mid_blocks\.([0-9]+)\.")
mid_blocks = max([-1, *(
int(match[1])
for key in state_dict
if (match := pattern.match(key)) is not None
)]) + 1
return HydraPool(
attn_dim,
head_dim,
n_classes,
mid_blocks=mid_blocks,
roots=roots,
ff_ratio=ff_ratio,
ff_dropout=ff_dropout,
input_dim=input_dim,
output_dim=output_dim,
device=device,
dtype=dtype
)
|