File size: 5,282 Bytes
8771ea4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py 

import torch

class LatentRebatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "latents": ("LATENT",),
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
                              }}
    RETURN_TYPES = ("LATENT",)
    INPUT_IS_LIST = True
    OUTPUT_IS_LIST = (True, )

    FUNCTION = "rebatch"

    CATEGORY = "latent/batch"

    @staticmethod
    def get_batch(latents, list_ind, offset):
        '''prepare a batch out of the list of latents'''
        samples = latents[list_ind]['samples']
        shape = samples.shape
        mask = latents[list_ind]['noise_mask'] if 'noise_mask' in latents[list_ind] else torch.ones((shape[0], 1, shape[2]*8, shape[3]*8), device='cpu')
        if mask.shape[-1] != shape[-1] * 8 or mask.shape[-2] != shape[-2]:
            torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(shape[-2]*8, shape[-1]*8), mode="bilinear")
        if mask.shape[0] < samples.shape[0]:
            mask = mask.repeat((shape[0] - 1) // mask.shape[0] + 1, 1, 1, 1)[:shape[0]]
        if 'batch_index' in latents[list_ind]:
            batch_inds = latents[list_ind]['batch_index']
        else:
            batch_inds = [x+offset for x in range(shape[0])]
        return samples, mask, batch_inds

    @staticmethod
    def get_slices(indexable, num, batch_size):
        '''divides an indexable object into num slices of length batch_size, and a remainder'''
        slices = []
        for i in range(num):
            slices.append(indexable[i*batch_size:(i+1)*batch_size])
        if num * batch_size < len(indexable):
            return slices, indexable[num * batch_size:]
        else:
            return slices, None
    
    @staticmethod
    def slice_batch(batch, num, batch_size):
        result = [LatentRebatch.get_slices(x, num, batch_size) for x in batch]
        return list(zip(*result))

    @staticmethod
    def cat_batch(batch1, batch2):
        if batch1[0] is None:
            return batch2
        result = [torch.cat((b1, b2)) if torch.is_tensor(b1) else b1 + b2 for b1, b2 in zip(batch1, batch2)]
        return result

    def rebatch(self, latents, batch_size):
        batch_size = batch_size[0]

        output_list = []
        current_batch = (None, None, None)
        processed = 0

        for i in range(len(latents)):
            # fetch new entry of list
            #samples, masks, indices = self.get_batch(latents, i)
            next_batch = self.get_batch(latents, i, processed)
            processed += len(next_batch[2])
            # set to current if current is None
            if current_batch[0] is None:
                current_batch = next_batch
            # add previous to list if dimensions do not match
            elif next_batch[0].shape[-1] != current_batch[0].shape[-1] or next_batch[0].shape[-2] != current_batch[0].shape[-2]:
                sliced, _ = self.slice_batch(current_batch, 1, batch_size)
                output_list.append({'samples': sliced[0][0], 'noise_mask': sliced[1][0], 'batch_index': sliced[2][0]})
                current_batch = next_batch
            # cat if everything checks out
            else:
                current_batch = self.cat_batch(current_batch, next_batch)

            # add to list if dimensions gone above target batch size
            if current_batch[0].shape[0] > batch_size:
                num = current_batch[0].shape[0] // batch_size
                sliced, remainder = self.slice_batch(current_batch, num, batch_size)
                
                for i in range(num):
                    output_list.append({'samples': sliced[0][i], 'noise_mask': sliced[1][i], 'batch_index': sliced[2][i]})

                current_batch = remainder

        #add remainder
        if current_batch[0] is not None:
            sliced, _ = self.slice_batch(current_batch, 1, batch_size)
            output_list.append({'samples': sliced[0][0], 'noise_mask': sliced[1][0], 'batch_index': sliced[2][0]})

        #get rid of empty masks
        for s in output_list:
            if s['noise_mask'].mean() == 1.0:
                del s['noise_mask']

        return (output_list,)

class ImageRebatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "images": ("IMAGE",),
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
                              }}
    RETURN_TYPES = ("IMAGE",)
    INPUT_IS_LIST = True
    OUTPUT_IS_LIST = (True, )

    FUNCTION = "rebatch"

    CATEGORY = "image/batch"

    def rebatch(self, images, batch_size):
        batch_size = batch_size[0]

        output_list = []
        all_images = []
        for img in images:
            for i in range(img.shape[0]):
                all_images.append(img[i:i+1])

        for i in range(0, len(all_images), batch_size):
            output_list.append(torch.cat(all_images[i:i+batch_size], dim=0))

        return (output_list,)

NODE_CLASS_MAPPINGS = {
    "RebatchLatents": LatentRebatch,
    "RebatchImages": ImageRebatch,
}

NODE_DISPLAY_NAME_MAPPINGS = {
    "RebatchLatents": "Rebatch Latents",
    "RebatchImages": "Rebatch Images",
}