File size: 1,737 Bytes
be013d3
 
 
 
 
 
4723f11
 
be013d3
 
c1214bf
 
 
e590a38
c1214bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
---
title: README
emoji: πŸ“Š
colorFrom: green
colorTo: blue
sdk: static
pinned: true
short_description: Persian-llm-fibonacci-1-7b-chat.P1_0 is a 7 billion para
---

# Persian-llm-fibonacci-1-7b-chat.P1_0 🌟

## Description πŸ“„
The **Persian-llm-fibonacci-1-7b-chat.P1_0** is a **7 billion parameter language model (LLM)** specifically designed for **Persian-language chat and text interactions**. Developed as part of the **FibonacciAI** project, this model is optimized to generate fluent and natural Persian text, making it ideal for conversational AI applications.

Built on advanced language model architectures (e.g., GPT), it excels in tasks like chat, content generation, question answering, and more. πŸš€

---

## Use Cases πŸ’‘
- **Chatbots**: Create intelligent Persian-language chatbots. πŸ€–
- **Content Generation**: Generate creative and contextually relevant Persian text. πŸ“
- **Question Answering**: Provide natural and accurate answers to user queries. ❓
- **Machine Translation**: Translate text to and from Persian. 🌍

---

## How to Use πŸ› οΈ
To use this model, you can leverage the `transformers` library. Here's a quick example:

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load the model and tokenizer
model_name = "fibonacciai/Persian-llm-fibonacci-1-7b-chat.P1_0"
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Generate a response to an input text
input_text = "Ψ³Ω„Ψ§Ω…ΨŒ Ϊ†Ψ·ΩˆΨ±ΫŒΨŸ"
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs, max_length=50)

# Decode the output to text
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)