File size: 12,207 Bytes
04c7efc 7c79299 a769262 7c79299 a769262 7c79299 a769262 7c79299 a769262 7c79299 a769262 7c79299 a769262 7c79299 a769262 7c79299 a769262 7c79299 04c7efc 7c79299 04c7efc 7c79299 04c7efc 7c79299 a769262 7c79299 a769262 7c79299 a769262 04c7efc 7c79299 04c7efc 7c79299 04c7efc 7c79299 04c7efc 7c79299 a769262 04c7efc 7c79299 a769262 7c79299 a769262 7c79299 a769262 7c79299 a769262 7c79299 a769262 7c79299 a769262 04c7efc 7c79299 04c7efc 7c79299 e5c4a6a 7c79299 e5c4a6a 7c79299 e5c4a6a 04c7efc 7c79299 a769262 7c79299 04c7efc 7c79299 04c7efc 7c79299 04c7efc 7c79299 04c7efc 7c79299 a769262 7c79299 04c7efc 7c79299 a769262 7c79299 a769262 04c7efc 7c79299 04c7efc 7c79299 04c7efc 7c79299 04c7efc 7c79299 a769262 04c7efc 7c79299 04c7efc 7c79299 04c7efc 7c79299 e5c4a6a 7c79299 04c7efc 7c79299 04c7efc 7c79299 04c7efc 7c79299 a769262 7c79299 a769262 7c79299 a769262 7c79299 a769262 7c79299 a769262 7c79299 04c7efc 7c79299 04c7efc a769262 7c79299 a769262 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
import gradio as gr
import requests
import os
import json
from typing import List, Dict, Optional
import time
# Curated selection of advanced AI models for general users
ADVANCED_MODELS = {
"meta-llama/Llama-3.3-70B-Instruct": {
"provider": "Cerebras",
"display_name": "Llama 3.3 70B (Ultra Fast)",
"description": "Meta's latest and most capable model, optimized for speed",
"category": "General Purpose",
"endpoint": "https://router.huggingface.co/v1/chat/completions"
},
"deepseek-ai/DeepSeek-R1": {
"provider": "Groq",
"display_name": "DeepSeek R1 (Reasoning)",
"description": "Advanced reasoning model for complex problem solving",
"category": "Reasoning & Analysis",
"endpoint": "https://router.huggingface.co/v1/chat/completions"
},
"meta-llama/Meta-Llama-3.1-405B-Instruct": {
"provider": "SambaNova",
"display_name": "Llama 3.1 405B (Most Powerful)",
"description": "Meta's largest and most capable language model",
"category": "Expert Level",
"endpoint": "https://router.huggingface.co/v1/chat/completions"
},
"meta-llama/Meta-Llama-3-70B-Instruct": {
"provider": "Together",
"display_name": "Llama 3 70B (Balanced)",
"description": "Excellent balance of capability and speed",
"category": "General Purpose",
"endpoint": "https://router.huggingface.co/v1/chat/completions"
},
"cohere/command-r-plus": {
"provider": "Cohere",
"display_name": "Command R+ (Enterprise)",
"description": "Enterprise-grade model for professional use",
"category": "Business & Professional",
"endpoint": "https://router.huggingface.co/v1/chat/completions"
},
"Qwen/Qwen2.5-72B-Instruct": {
"provider": "Novita",
"display_name": "Qwen 2.5 72B (Multilingual)",
"description": "Excellent for multiple languages and coding",
"category": "Multilingual & Code",
"endpoint": "https://router.huggingface.co/v1/chat/completions"
},
"mistralai/Mixtral-8x7B-Instruct-v0.1": {
"provider": "Nebius",
"display_name": "Mixtral 8x7B (Efficient)",
"description": "Fast and efficient for everyday tasks",
"category": "Daily Tasks",
"endpoint": "https://router.huggingface.co/v1/chat/completions"
}
}
class AIChat:
def __init__(self):
self.hf_token = os.getenv("HF_TOKEN")
if not self.hf_token:
raise ValueError("HF_TOKEN environment variable is required")
self.headers = {
"Authorization": f"Bearer {self.hf_token}",
"Content-Type": "application/json"
}
def send_message(self, model_id: str, message: str, conversation_history: List = None) -> Dict:
"""Send a chat message to the selected AI model"""
if model_id not in ADVANCED_MODELS:
return {
"success": False,
"error": "Selected model is not available"
}
model_info = ADVANCED_MODELS[model_id]
# Build conversation with history
messages = []
if conversation_history:
messages.extend(conversation_history)
messages.append({"role": "user", "content": message})
payload = {
"model": model_id,
"messages": messages,
"max_tokens": 1000,
"temperature": 0.7,
"stream": False
}
try:
response = requests.post(
model_info["endpoint"],
headers=self.headers,
json=payload,
timeout=60
)
if response.status_code == 200:
result = response.json()
if "choices" in result and len(result["choices"]) > 0:
ai_response = result["choices"][0]["message"]["content"]
return {
"success": True,
"response": ai_response,
"model": model_info["display_name"],
"provider": model_info["provider"]
}
else:
return {
"success": False,
"error": "No response generated"
}
else:
return {
"success": False,
"error": f"API Error: {response.status_code} - {response.text}"
}
except Exception as e:
return {
"success": False,
"error": f"Connection error: {str(e)}"
}
def create_chat_interface():
try:
chat_ai = AIChat()
except ValueError as e:
# Create error interface
with gr.Blocks(title="❌ Setup Required") as demo:
gr.Markdown(f"""
# ❌ Setup Required
**{str(e)}**
Please set the `HF_TOKEN` environment variable with your HuggingFace token.
Get your token at: https://huggingface.co/settings/tokens
""")
return demo
# Create model choices for dropdown
model_choices = [
(f"🚀 {info['display_name']} - {info['description']}", model_id)
for model_id, info in ADVANCED_MODELS.items()
]
def chat_with_ai(message, history, selected_model):
"""Handle chat conversation"""
if not message.strip():
return history, ""
if not selected_model:
history.append([message, "❌ Please select an AI model first"])
return history, ""
# Convert gradio history to API format
conversation_history = []
for user_msg, ai_msg in history:
if user_msg and ai_msg:
conversation_history.append({"role": "user", "content": user_msg})
conversation_history.append({"role": "assistant", "content": ai_msg})
# Send message to AI
result = chat_ai.send_message(selected_model, message, conversation_history)
if result["success"]:
# Add the new conversation to history
history.append([message, result["response"]])
return history, ""
else:
# Add error message to history
history.append([message, f"❌ Error: {result['error']}"])
return history, ""
def clear_chat():
"""Clear the chat history"""
return [], ""
def get_model_info(selected_model):
"""Get information about the selected model"""
if not selected_model or selected_model not in ADVANCED_MODELS:
return "Select a model to see details"
info = ADVANCED_MODELS[selected_model]
return f"""
**🤖 {info['display_name']}**
**Provider:** {info['provider']}
**Category:** {info['category']}
**Description:** {info['description']}
Ready to chat! Type your message below.
"""
# Create the interface
with gr.Blocks(
title="🤖 Chat with Advanced AI Models",
theme=gr.themes.Soft(),
css="""
.chat-container {
max-width: 1000px;
margin: 0 auto;
}
.model-info {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 15px;
border-radius: 10px;
margin: 10px 0;
}
"""
) as demo:
gr.Markdown("""
# 🤖 Chat with Advanced AI Models
**Experience the latest AI technology!** Choose from powerful models and start chatting instantly.
✨ **What you can do:**
- Ask questions and get intelligent answers
- Get help with writing, analysis, and creative tasks
- Solve problems and get explanations
- Have natural conversations
""")
with gr.Row():
# Left column - Model selection
with gr.Column(scale=1):
gr.Markdown("### 🎯 Choose Your AI")
model_selector = gr.Dropdown(
choices=model_choices,
label="Select AI Model",
info="Each model has different strengths",
interactive=True
)
model_info_display = gr.Markdown(
"Select a model to see details",
elem_classes=["model-info"]
)
# Update model info when selection changes
model_selector.change(
get_model_info,
inputs=model_selector,
outputs=model_info_display
)
# Right column - Chat interface
with gr.Column(scale=2):
gr.Markdown("### 💬 Chat Interface")
chatbot = gr.Chatbot(
label="Conversation",
height=400,
show_label=False,
container=True,
elem_classes=["chat-container"]
)
with gr.Row():
message_input = gr.Textbox(
placeholder="Type your message here...",
label="Your Message",
scale=4,
lines=1
)
send_btn = gr.Button("Send 📤", variant="primary", scale=1)
with gr.Row():
clear_btn = gr.Button("Clear Chat 🗑️", variant="secondary")
# Chat functionality
def submit_message(message, history, model):
new_history, cleared_input = chat_with_ai(message, history, model)
return new_history, "" # Return updated history and clear the input
# Send message on button click or enter
send_btn.click(
submit_message,
inputs=[message_input, chatbot, model_selector],
outputs=[chatbot, message_input]
).then(
lambda: "", outputs=message_input # Clear input after sending
)
message_input.submit(
submit_message,
inputs=[message_input, chatbot, model_selector],
outputs=[chatbot, message_input]
).then(
lambda: "", outputs=message_input # Clear input after sending
)
# Clear chat
clear_btn.click(clear_chat, outputs=[chatbot, message_input])
# Footer
gr.Markdown("""
---
## 🚀 **Featured AI Models:**
- **🚀 Ultra Fast**: Llama 3.3 70B on Cerebras chips
- **🧠 Reasoning**: DeepSeek R1 for complex problem solving
- **💪 Most Powerful**: Llama 3.1 405B for expert tasks
- **⚖️ Balanced**: Llama 3 70B for everyday use
- **💼 Enterprise**: Command R+ for professional work
- **🌍 Multilingual**: Qwen 2.5 72B for global communication
- **⚡ Efficient**: Mixtral 8x7B for quick responses
## 💡 **Tips for Better Conversations:**
- Be specific about what you want
- Ask follow-up questions for deeper insights
- Try different models for different types of tasks
- Use clear, natural language
---
*Powered by HuggingFace Inference Providers* 🤗
""")
return demo
if __name__ == "__main__":
try:
demo = create_chat_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)
except Exception as e:
print(f"Error starting chat application: {e}")
print("Please ensure HF_TOKEN environment variable is set.")
|