File size: 30,439 Bytes
c6899d7 41e4860 c6899d7 41e4860 c6899d7 41e4860 c6899d7 41e4860 c6899d7 41e4860 c6899d7 41e4860 c6899d7 41e4860 c6899d7 41e4860 c6899d7 41e4860 c6899d7 41e4860 c6899d7 41e4860 c6899d7 41e4860 c6899d7 41e4860 c6899d7 41e4860 c6899d7 41e4860 c6899d7 41e4860 c6899d7 41e4860 c6899d7 41e4860 c6899d7 41e4860 c6899d7 41e4860 c6899d7 41e4860 c6899d7 41e4860 c6899d7 41e4860 c6899d7 41e4860 c6899d7 41e4860 c6899d7 41e4860 c6899d7 41e4860 c6899d7 41e4860 c6899d7 41e4860 c6899d7 41e4860 c6899d7 41e4860 c6899d7 41e4860 c6899d7 41e4860 c6899d7 41e4860 c6899d7 41e4860 c6899d7 41e4860 c6899d7 41e4860 c6899d7 41e4860 c6899d7 41e4860 c6899d7 41e4860 c6899d7 41e4860 c6899d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 |
import gradio as gr
import os
import json
import hashlib
import datetime
from typing import List, Dict, Any, Optional
import requests
import time
import uuid
from pinecone import Pinecone
class RAGMemorySystem:
"""RAG system using Pinecone with integrated inference for embeddings and vector storage"""
def __init__(self):
# Initialize Pinecone - use the hardcoded key or environment variable
self.pinecone_api_key = os.getenv("PINECONE_API_KEY", "pcsk_6Ydj5y_QqLzPNzMEh2NMJv5Crh5XVYTTTkZTHkWjQkZAiU5SDthzYZW4ZvDF2qo1g9GPUR")
self.pinecone_environment = os.getenv("PINECONE_ENVIRONMENT", "us-east-1") # Serverless doesn't need specific environment
# Use a consistent index name instead of generating unique ones
self.index_name = os.getenv("PINECONE_INDEX_NAME", "shared-ai-experiences")
# Pinecone inference model configuration
self.embedding_model = os.getenv("PINECONE_EMBEDDING_MODEL", "multilingual-e5-large")
self.rerank_model = os.getenv("PINECONE_RERANK_MODEL", "pinecone-rerank-v0")
# Initialize OpenRouter
self.openrouter_api_key = os.getenv("OPENROUTER_API_KEY")
self.model_name = os.getenv("MODEL_NAME", "meta-llama/llama-3.2-3b-instruct:free")
# Initialize Pinecone client
self.pc = None
self.index = None
# Initialize Pinecone
self.init_pinecone()
def update_model(self, new_model: str):
"""Update the OpenRouter model"""
if new_model and new_model.strip():
self.model_name = new_model.strip()
return f"β
Model updated to: {self.model_name}"
return "β Please enter a valid model name"
def init_pinecone(self):
"""Initialize Pinecone connection with integrated inference"""
try:
if self.pinecone_api_key:
# Initialize Pinecone client
self.pc = Pinecone(api_key=self.pinecone_api_key)
print(f"Attempting to connect to Pinecone...")
# Check existing indexes
try:
existing_indexes = [idx.name for idx in self.pc.list_indexes()]
print(f"Existing indexes: {existing_indexes}")
except Exception as list_error:
print(f"Error listing indexes: {list_error}")
existing_indexes = []
# Only create index if it doesn't exist
if self.index_name not in existing_indexes:
print(f"Index '{self.index_name}' not found. Creating new Pinecone index with integrated inference...")
try:
# Create index with integrated embedding model
index_model = self.pc.create_index_for_model(
name=self.index_name,
cloud="aws",
region="us-east-1",
embed={
"model": self.embedding_model,
"field_map": {"text": "content"} # Map 'text' field to 'content' field
}
)
print(f"Successfully created index with integrated inference: {self.index_name}")
print(f"Index details: {index_model}")
# Wait for index to be ready
print("Waiting for index to be ready...")
time.sleep(10)
except Exception as create_error:
print(f"Error creating index with integrated inference: {create_error}")
# Fallback to traditional index creation
try:
print("Attempting fallback to traditional index creation...")
self.pc.create_index(
name=self.index_name,
dimension=1024, # multilingual-e5-large dimension
metric="cosine",
spec={
"serverless": {
"cloud": "aws",
"region": "us-east-1"
}
}
)
print(f"Created fallback traditional index: {self.index_name}")
time.sleep(5)
except Exception as fallback_error:
print(f"Failed to create fallback index: {fallback_error}")
self.index = None
return
else:
print(f"Index '{self.index_name}' already exists. Connecting to existing index...")
# Connect to the index (whether existing or newly created)
try:
self.index = self.pc.Index(self.index_name)
print(f"Successfully connected to Pinecone index: {self.index_name}")
# Test the connection and get stats
stats = self.index.describe_index_stats()
print(f"Index stats: {stats}")
# Check if this is an existing index with data
total_vectors = stats.get('total_vector_count', 0)
if total_vectors > 0:
print(f"Found existing index with {total_vectors} stored experiences. Continuing with shared knowledge base.")
else:
print("Index is empty. Ready to start building shared knowledge base.")
except Exception as connect_error:
print(f"Error connecting to index: {connect_error}")
self.index = None
else:
print("Warning: Pinecone API key not found. Memory storage disabled.")
self.index = None
except Exception as e:
print(f"Error initializing Pinecone: {e}")
self.index = None
def create_embedding(self, text: str) -> List[float]:
"""Create embedding using Pinecone's inference API"""
try:
if not self.pc:
print("Pinecone client not available, returning zero vector")
return [0.0] * 1024
# Use Pinecone's inference API for embeddings
response = self.pc.inference.embed(
model=self.embedding_model,
inputs=[text],
parameters={
"input_type": "passage", # Use 'passage' for storing, 'query' for searching
"truncate": "END"
}
)
if response and len(response.data) > 0:
return response.data[0].values
else:
print("No embedding data received, returning zero vector")
return [0.0] * 1024
except Exception as e:
print(f"Error creating embedding with Pinecone inference: {e}")
return [0.0] * 1024 # Return zero vector as fallback
def create_query_embedding(self, text: str) -> List[float]:
"""Create embedding for query using Pinecone's inference API"""
try:
if not self.pc:
print("Pinecone client not available, returning zero vector")
return [0.0] * 1024
# Use Pinecone's inference API for query embeddings
response = self.pc.inference.embed(
model=self.embedding_model,
inputs=[text],
parameters={
"input_type": "query", # Use 'query' for searching
"truncate": "END"
}
)
if response and len(response.data) > 0:
return response.data[0].values
else:
print("No embedding data received, returning zero vector")
return [0.0] * 1024
except Exception as e:
print(f"Error creating query embedding with Pinecone inference: {e}")
return [0.0] * 1024 # Return zero vector as fallback
def store_experience(self, user_input: str, ai_response: str, context: str = "") -> str:
"""Store conversation experience in Pinecone using integrated inference"""
if not self.index:
return "Memory storage not available (Pinecone not configured)"
try:
# Create a unique ID for this experience
experience_id = hashlib.md5(
f"{user_input}_{ai_response}_{datetime.datetime.now()}_{uuid.uuid4()}".encode()
).hexdigest()
# Create combined text for embedding
combined_text = f"User: {user_input}\nAI: {ai_response}\nContext: {context}"
# Check if index supports integrated inference
try:
# Try using integrated inference first (if index was created with create_index_for_model)
record = {
"id": experience_id,
"content": combined_text, # This will be automatically embedded
"metadata": {
"user_input": user_input[:1000],
"ai_response": ai_response[:1000],
"context": context[:500],
"timestamp": datetime.datetime.now().isoformat(),
"interaction_type": "conversation",
"session_id": getattr(self, 'session_id', 'shared')
}
}
# Try upsert with integrated inference
self.index.upsert_records([record])
return f"β
Experience stored with integrated inference, ID: {experience_id[:8]}..."
except Exception as integrated_error:
print(f"Integrated inference failed: {integrated_error}")
# Fallback to manual embedding
embedding = self.create_embedding(combined_text)
# Store in Pinecone with manual embedding
self.index.upsert([(experience_id, embedding, {
"user_input": user_input[:1000],
"ai_response": ai_response[:1000],
"context": context[:500],
"timestamp": datetime.datetime.now().isoformat(),
"interaction_type": "conversation",
"session_id": getattr(self, 'session_id', 'shared')
})])
return f"β
Experience stored with manual embedding, ID: {experience_id[:8]}..."
except Exception as e:
return f"β Error storing experience: {e}"
def retrieve_relevant_experiences(self, query: str, top_k: int = 3) -> List[Dict]:
"""Retrieve relevant past experiences based on query using Pinecone inference"""
if not self.index:
return []
try:
# Try integrated search first
try:
results = self.index.search_records(
query={
"top_k": top_k,
"inputs": {"text": query}
},
include_metadata=True
)
relevant_experiences = []
if hasattr(results, 'matches'):
for match in results.matches:
if match.score > 0.3:
relevant_experiences.append({
"score": match.score,
"user_input": match.metadata.get("user_input", ""),
"ai_response": match.metadata.get("ai_response", ""),
"context": match.metadata.get("context", ""),
"timestamp": match.metadata.get("timestamp", ""),
"id": match.id
})
return relevant_experiences
except Exception as integrated_error:
print(f"Integrated search failed: {integrated_error}")
# Fallback to manual embedding + query
query_embedding = self.create_query_embedding(query)
# Search Pinecone with manual embedding
results = self.index.query(
vector=query_embedding,
top_k=top_k,
include_metadata=True
)
relevant_experiences = []
for match in results.matches:
if match.score > 0.3:
relevant_experiences.append({
"score": match.score,
"user_input": match.metadata.get("user_input", ""),
"ai_response": match.metadata.get("ai_response", ""),
"context": match.metadata.get("context", ""),
"timestamp": match.metadata.get("timestamp", ""),
"id": match.id
})
return relevant_experiences
except Exception as e:
print(f"Error retrieving experiences: {e}")
return []
def rerank_results(self, query: str, documents: List[str]) -> List[Dict]:
"""Rerank results using Pinecone's reranking model"""
if not self.pc or not documents:
return []
try:
# Use Pinecone's inference API for reranking
response = self.pc.inference.rerank(
model=self.rerank_model,
query=query,
documents=documents,
top_k=min(len(documents), 5) # Rerank top 5
)
reranked_results = []
if response and hasattr(response, 'data'):
for result in response.data:
reranked_results.append({
"document": result.document.text,
"score": result.relevance_score,
"index": result.index
})
return reranked_results
except Exception as e:
print(f"Error reranking results: {e}")
return []
def call_openrouter(self, messages: List[Dict], temperature: float = 0.7) -> str:
"""Call OpenRouter API"""
if not self.openrouter_api_key:
return "Error: OpenRouter API key not configured. Please set the OPENROUTER_API_KEY environment variable."
try:
headers = {
"Authorization": f"Bearer {self.openrouter_api_key}",
"Content-Type": "application/json",
"HTTP-Referer": "https://huggingface.co",
"X-Title": "AI RAG Memory System"
}
data = {
"model": self.model_name,
"messages": messages,
"temperature": temperature,
"max_tokens": 1000
}
response = requests.post(
"https://openrouter.ai/api/v1/chat/completions",
headers=headers,
json=data,
timeout=30
)
if response.status_code == 200:
result = response.json()
return result["choices"][0]["message"]["content"]
else:
return f"API Error: {response.status_code} - {response.text}"
except Exception as e:
return f"Error calling OpenRouter: {e}"
def generate_response_with_rag(self, user_input: str, conversation_history: List = None) -> tuple:
"""Generate AI response using RAG with stored experiences and Pinecone inference"""
# Retrieve relevant past experiences
relevant_experiences = self.retrieve_relevant_experiences(user_input)
# Build context from relevant experiences
context_parts = []
if relevant_experiences:
context_parts.append("π§ Relevant past experiences from the shared knowledge base (powered by Pinecone inference):")
# Extract documents for reranking
documents = [f"User: {exp['user_input']} AI: {exp['ai_response']}" for exp in relevant_experiences]
# Try to rerank the results
reranked = self.rerank_results(user_input, documents)
if reranked:
context_parts.append(f"\nπ Reranked results using {self.rerank_model}:")
for i, result in enumerate(reranked, 1):
context_parts.append(f"{i}. (Relevance: {result['score']:.3f}) {result['document'][:200]}...")
else:
# Fallback to original results
for i, exp in enumerate(relevant_experiences, 1):
context_parts.append(f"\n{i}. Previous interaction from shared knowledge (similarity: {exp['score']:.2f}):")
context_parts.append(f" π€ User: {exp['user_input'][:200]}...")
context_parts.append(f" π€ AI: {exp['ai_response'][:200]}...")
context_parts.append(f" π Time: {exp['timestamp'][:19]}")
if exp['context']:
context_parts.append(f" π Context: {exp['context'][:100]}...")
context_parts.append("")
else:
context_parts.append("π No previous relevant experiences found in the shared knowledge base. This is a fresh conversation!")
context_str = "\n".join(context_parts)
# Build messages for the AI
messages = [
{
"role": "system",
"content": f"""You are an AI assistant with access to a shared knowledge base of past conversations and interactions through Pinecone's vector database with integrated inference.
IMPORTANT: The context below contains conversations from OTHER USERS and previous AI responses - this is NOT your personal memory, but rather a shared knowledge base that multiple users contribute to. Each conversation you have will also be added to this shared knowledge base for future users.
The embeddings are generated using {self.embedding_model} and results are reranked with {self.rerank_model}.
SHARED KNOWLEDGE BASE CONTEXT:
{context_str}
Guidelines for using shared knowledge:
- The experiences above are from OTHER USERS' conversations, not your own memories
- Use these shared experiences to provide helpful, informed responses
- When referencing past interactions, make it clear they came from the shared knowledge base
- Don't claim personal ownership of experiences that belong to other users
- Learn from the collective knowledge while maintaining your own conversational identity
- Be transparent that you're drawing from a shared pool of experiences
- Build upon the collective wisdom while providing fresh, contextual responses
- Acknowledge when information comes from the shared knowledge base vs. the current conversation
Remember: You're part of a learning system where each conversation contributes to helping future users, but you should be clear about the source of your knowledge."""
}
]
# Add conversation history if provided
if conversation_history:
for msg in conversation_history[-5:]: # Last 5 messages
messages.append(msg)
# Add current user input
messages.append({"role": "user", "content": user_input})
# Generate response
ai_response = self.call_openrouter(messages)
# Store this interaction as a new experience
storage_result = self.store_experience(user_input, ai_response, context_str)
return ai_response, context_str, storage_result
def chat_with_rag(message: str, history: List = None) -> tuple:
"""Main chat function for Gradio interface"""
if not message.strip():
return "Please enter a message.", "", ""
# Convert Gradio history format to OpenAI format
conversation_history = []
if history:
for user_msg, ai_msg in history:
if user_msg:
conversation_history.append({"role": "user", "content": user_msg})
if ai_msg:
conversation_history.append({"role": "assistant", "content": ai_msg})
# Generate response with RAG
ai_response, context_used, storage_info = rag_system.generate_response_with_rag(
message, conversation_history
)
return ai_response, context_used, storage_info
def clear_conversation():
"""Clear the conversation history"""
return [], "", "", ""
def get_system_status():
"""Get current system status"""
status = []
# Check Pinecone connection
if rag_system.index:
try:
stats = rag_system.index.describe_index_stats()
total_vectors = stats.get('total_vector_count', 0)
status.append(f"β
Pinecone: Connected ({total_vectors} experiences)")
status.append(f"π§ Embedding: {rag_system.embedding_model}")
except Exception as e:
status.append(f"β οΈ Pinecone: Connected but stats unavailable")
else:
status.append("β Pinecone: Not connected")
# Check OpenRouter
if rag_system.openrouter_api_key:
status.append(f"β
OpenRouter: {rag_system.model_name}")
else:
status.append("β OpenRouter: Not configured")
return "\n".join(status)
# Minimal CSS for clean appearance
minimal_css = """
/* Clean, minimal styling */
.gradio-container {
max-width: 1100px !important;
margin: 0 auto !important;
}
/* Remove excess padding and margins */
.block {
border: none !important;
box-shadow: none !important;
}
/* Simple header */
.header {
text-align: center;
padding: 1rem;
background: linear-gradient(90deg, #4f46e5, #7c3aed);
color: white;
border-radius: 8px;
margin-bottom: 1rem;
}
/* Clean chatbot styling */
.chatbot {
border: 1px solid #e5e7eb !important;
border-radius: 8px !important;
}
/* Simple input styling */
.input-box {
border: 1px solid #d1d5db !important;
border-radius: 6px !important;
}
/* Clean buttons */
.primary-btn {
background: #4f46e5 !important;
border: none !important;
border-radius: 6px !important;
color: white !important;
}
.secondary-btn {
background: #f3f4f6 !important;
border: 1px solid #d1d5db !important;
border-radius: 6px !important;
color: #374151 !important;
}
/* Context area */
.context-area {
background: #f9fafb !important;
border: 1px solid #e5e7eb !important;
border-radius: 6px !important;
font-family: monospace !important;
font-size: 12px !important;
}
/* Status display */
.status-display {
background: #f0f9ff !important;
border: 1px solid #bae6fd !important;
border-radius: 6px !important;
font-family: monospace !important;
font-size: 12px !important;
}
/* Memory info */
.memory-display {
background: #f0fdf4 !important;
border: 1px solid #bbf7d0 !important;
border-radius: 6px !important;
font-size: 12px !important;
}
/* Remove default gradio styling */
.gr-button {
font-size: 14px !important;
}
.gr-textbox {
font-size: 14px !important;
}
/* Tabs styling */
.tab-nav {
border-bottom: 1px solid #e5e7eb;
}
/* Collapsible sections */
.accordion {
border: 1px solid #e5e7eb;
border-radius: 6px;
margin: 0.5rem 0;
}
"""
# Initialize the RAG system
rag_system = RAGMemorySystem()
# Create minimal Gradio interface
with gr.Blocks(
title="AI Assistant with RAG",
css=minimal_css,
theme=gr.themes.Soft()
) as demo:
# Simple header
gr.HTML("""
<div class="header">
<h2 style="margin: 0;">π€ AI Assistant with RAG</h2>
<p style="margin: 5px 0 0 0; opacity: 0.9;">Powered by Pinecone Vector Search</p>
</div>
""")
# Main chat interface
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(
height=450,
show_label=False,
elem_classes=["chatbot"]
)
with gr.Row():
msg = gr.Textbox(
placeholder="Type your message...",
show_label=False,
scale=4,
elem_classes=["input-box"]
)
send_btn = gr.Button(
"Send",
variant="primary",
scale=1,
elem_classes=["primary-btn"]
)
with gr.Row():
clear_btn = gr.Button(
"Clear Chat",
variant="secondary",
elem_classes=["secondary-btn"]
)
with gr.Column(scale=1):
# Context display (collapsible)
with gr.Accordion("Knowledge Context", open=False):
context_display = gr.Textbox(
lines=8,
interactive=False,
show_label=False,
placeholder="Retrieved context appears here...",
elem_classes=["context-area"]
)
# Storage info
storage_info = gr.Textbox(
lines=1,
interactive=False,
show_label=False,
placeholder="Storage status...",
elem_classes=["memory-display"]
)
# Settings section (collapsible)
with gr.Accordion("Settings", open=False):
with gr.Row():
with gr.Column():
gr.Markdown("### Model Configuration")
with gr.Row():
model_input = gr.Textbox(
label="OpenRouter Model",
value=rag_system.model_name,
placeholder="Enter model name...",
scale=3
)
update_btn = gr.Button(
"Update",
variant="primary",
scale=1,
elem_classes=["primary-btn"]
)
model_status = gr.Textbox(
label="Current Model",
value=f"Using: {rag_system.model_name}",
interactive=False
)
gr.Markdown("""
**Free Models:**
- `meta-llama/llama-3.2-3b-instruct:free`
- `microsoft/phi-3-mini-128k-instruct:free`
- `google/gemma-2-9b-it:free`
""")
with gr.Column():
gr.Markdown("### System Status")
status_display = gr.Textbox(
value=get_system_status(),
lines=4,
interactive=False,
show_label=False,
elem_classes=["status-display"]
)
refresh_btn = gr.Button(
"Refresh",
variant="secondary",
elem_classes=["secondary-btn"]
)
# About section (collapsible)
with gr.Accordion("About", open=False):
gr.Markdown("""
### AI Assistant with RAG
This application uses **Retrieval-Augmented Generation** to provide more informed responses by:
- Storing conversations in a **Pinecone vector database**
- Retrieving relevant past experiences using **semantic search**
- Using **multilingual-e5-large** embeddings for understanding
- Reranking results with **pinecone-rerank-v0** for better relevance
**Privacy:** Conversations are stored in a shared knowledge base. No personal data is retained.
""")
# Event handlers
def respond(message, history):
if not message:
return history, "", "", ""
ai_response, context_used, storage_info_text = chat_with_rag(message, history)
if history is None:
history = []
history.append((message, ai_response))
return history, "", context_used, storage_info_text
def update_model_handler(new_model):
result = rag_system.update_model(new_model)
status = f"Using: {rag_system.model_name}"
return "", status, get_system_status()
# Wire up events
send_btn.click(
respond,
inputs=[msg, chatbot],
outputs=[chatbot, msg, context_display, storage_info]
)
msg.submit(
respond,
inputs=[msg, chatbot],
outputs=[chatbot, msg, context_display, storage_info]
)
clear_btn.click(
clear_conversation,
outputs=[chatbot, msg, context_display, storage_info]
)
update_btn.click(
update_model_handler,
inputs=[model_input],
outputs=[model_input, model_status, status_display]
)
refresh_btn.click(
get_system_status,
outputs=[status_display]
)
# Launch
if __name__ == "__main__":
demo.launch(
share=True,
server_name="0.0.0.0",
server_port=7860,
show_error=True
) |