Spaces:
Paused
Paused
File size: 18,251 Bytes
922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf 922c3ba c636ebf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
"""
AI Service for Legal Dashboard
=============================
Advanced AI-powered features for legal document analysis including:
- Intelligent document scoring and classification
- Legal entity extraction and recognition
- Sentiment analysis for legal documents
- Smart search and recommendation engine
- Document similarity analysis
"""
import re
import json
import logging
from typing import Dict, List, Optional, Tuple, Any
from datetime import datetime, timedelta
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.cluster import KMeans
import hashlib
import sqlite3
from pathlib import Path
logger = logging.getLogger(__name__)
class AIScoringEngine:
"""
Advanced AI scoring engine for legal documents
Provides intelligent analysis, classification, and recommendations
"""
def __init__(self):
"""Initialize the AI scoring engine"""
self.vectorizer = TfidfVectorizer(
max_features=1000,
stop_words=None, # Keep Persian stop words for legal context
ngram_range=(1, 3)
)
self.document_vectors = {}
self.legal_keywords = self._load_legal_keywords()
self.entity_patterns = self._load_entity_patterns()
self.sentiment_indicators = self._load_sentiment_indicators()
self.classification_categories = self._load_classification_categories()
def _load_legal_keywords(self) -> Dict[str, List[str]]:
"""Load Persian legal keywords for different categories"""
return {
"قانون": [
"قانون", "ماده", "تبصره", "بند", "فصل", "باب", "مصوبه", "تصویب",
"مجلس", "شورای", "ملی", "اساسی", "مدنی", "جزایی", "تجاری"
],
"قرارداد": [
"قرارداد", "عقد", "مفاد", "طرفین", "متعاهدین", "شرایط", "ماده",
"بند", "مبلغ", "پرداخت", "تعهد", "مسئولیت", "ضمانت"
],
"احکام": [
"حکم", "رای", "دادگاه", "قاضی", "شعبه", "دعوی", "خواهان",
"خوانده", "شهادت", "دلیل", "اثبات", "قانونی", "محکوم"
],
"مالی": [
"مالیات", "درآمد", "سود", "زیان", "دارایی", "بدهی", "حساب",
"ترازنامه", "صورت", "مالی", "دریافتی", "پرداختی"
],
"اداری": [
"اداره", "سازمان", "وزارت", "دولت", "مقام", "مسئول", "کارمند",
"مقررات", "دستورالعمل", "بخشنامه", "آییننامه"
]
}
def _load_entity_patterns(self) -> Dict[str, str]:
"""Load regex patterns for legal entity extraction"""
return {
"نام_شخص": r"([آ-ی]{2,}\s+){2,}",
"نام_شرکت": r"(شرکت|موسسه|سازمان|بنیاد)\s+([آ-ی\s]+)",
"شماره_قرارداد": r"شماره\s*:?\s*(\d+/\d+/\d+)",
"تاریخ": r"(\d{1,2}/\d{1,2}/\d{2,4})",
"مبلغ": r"(\d{1,3}(?:,\d{3})*)\s*(ریال|تومان|دلار|یورو)",
"شماره_ملی": r"(\d{10})",
"کد_پستی": r"(\d{10})",
"شماره_تلفن": r"(\d{2,4}-\d{3,4}-\d{4})"
}
def _load_sentiment_indicators(self) -> Dict[str, List[str]]:
"""Load Persian sentiment indicators for legal documents"""
return {
"positive": [
"موافق", "تایید", "قبول", "اجازه", "مجوز", "تصویب", "قانونی",
"مشروع", "صحیح", "درست", "مناسب", "مطلوب", "سودمند"
],
"negative": [
"مخالف", "رد", "عدم", "ممنوع", "غیرقانونی", "نامشروع",
"نادرست", "نامناسب", "مضر", "خطرناک", "ممنوع"
],
"neutral": [
"ماده", "بند", "تبصره", "قانون", "مقررات", "شرایط",
"مفاد", "طرفین", "تاریخ", "مبلغ", "شماره"
]
}
def _load_classification_categories(self) -> Dict[str, Dict]:
"""Load document classification categories with weights"""
return {
"قرارداد": {
"keywords": ["قرارداد", "عقد", "طرفین", "مفاد"],
"weight": 0.4,
"patterns": ["طرفین", "متعاهدین", "شرایط"]
},
"احکام_قضایی": {
"keywords": ["حکم", "رای", "دادگاه", "قاضی"],
"weight": 0.35,
"patterns": ["شعبه", "خواهان", "خوانده"]
},
"قوانین": {
"keywords": ["قانون", "ماده", "تبصره", "مجلس"],
"weight": 0.3,
"patterns": ["مصوبه", "تصویب", "اساسی"]
},
"مقررات_اداری": {
"keywords": ["مقررات", "دستورالعمل", "آییننامه"],
"weight": 0.25,
"patterns": ["اداره", "سازمان", "وزارت"]
},
"اسناد_مالی": {
"keywords": ["مالی", "حساب", "ترازنامه", "صورت"],
"weight": 0.2,
"patterns": ["درآمد", "سود", "زیان"]
}
}
def analyze_document(self, text: str, metadata: Dict = None) -> Dict[str, Any]:
"""
Comprehensive document analysis including scoring, classification, and insights
Args:
text: Document text content
metadata: Additional document metadata
Returns:
Dictionary containing analysis results
"""
try:
# Basic text preprocessing
cleaned_text = self._preprocess_text(text)
# Perform various analyses
analysis = {
"basic_metrics": self._calculate_basic_metrics(cleaned_text),
"classification": self._classify_document(cleaned_text),
"entities": self._extract_entities(cleaned_text),
"sentiment": self._analyze_sentiment(cleaned_text),
"keywords": self._extract_keywords(cleaned_text),
"quality_score": self._calculate_quality_score(cleaned_text, metadata),
"recommendations": self._generate_recommendations(cleaned_text, metadata),
"timestamp": datetime.now().isoformat()
}
# Add similarity analysis if we have existing documents
if self.document_vectors:
analysis["similarity"] = self._find_similar_documents(
cleaned_text)
return analysis
except Exception as e:
logger.error(f"Error in document analysis: {e}")
return {
"error": str(e),
"timestamp": datetime.now().isoformat()
}
def _preprocess_text(self, text: str) -> str:
"""Clean and normalize Persian text"""
# Remove extra whitespace
text = re.sub(r'\s+', ' ', text.strip())
# Normalize Persian characters
text = text.replace('ي', 'ی').replace('ك', 'ک')
# Remove common noise characters
text = re.sub(
r'[^\u0600-\u06FF\u0750-\u077F\u08A0-\u08FF\uFB50-\uFDFF\uFE70-\uFEFF\s\d\-\.\/]', '', text)
return text
def _calculate_basic_metrics(self, text: str) -> Dict[str, Any]:
"""Calculate basic document metrics"""
words = text.split()
sentences = re.split(r'[.!?؟]', text)
sentences = [s.strip() for s in sentences if s.strip()]
return {
"word_count": len(words),
"sentence_count": len(sentences),
"avg_sentence_length": len(words) / len(sentences) if sentences else 0,
"unique_words": len(set(words)),
"vocabulary_diversity": len(set(words)) / len(words) if words else 0,
"legal_terms_count": self._count_legal_terms(text)
}
def _count_legal_terms(self, text: str) -> int:
"""Count legal terms in the document"""
count = 0
for category_terms in self.legal_keywords.values():
for term in category_terms:
count += text.count(term)
return count
def _classify_document(self, text: str) -> Dict[str, float]:
"""Classify document into legal categories"""
scores = {}
for category, config in self.classification_categories.items():
score = 0
weight = config["weight"]
# Keyword matching
for keyword in config["keywords"]:
if keyword in text:
score += weight
# Pattern matching
for pattern in config["patterns"]:
if pattern in text:
score += weight * 0.5
scores[category] = min(score, 1.0)
# Normalize scores
total_score = sum(scores.values())
if total_score > 0:
scores = {k: v/total_score for k, v in scores.items()}
return scores
def _extract_entities(self, text: str) -> Dict[str, List[str]]:
"""Extract legal entities from text"""
entities = {}
for entity_type, pattern in self.entity_patterns.items():
matches = re.findall(pattern, text)
if matches:
entities[entity_type] = list(set(matches))
return entities
def _analyze_sentiment(self, text: str) -> Dict[str, float]:
"""Analyze sentiment of legal document"""
sentiment_scores = {"positive": 0, "negative": 0, "neutral": 0}
total_words = len(text.split())
if total_words == 0:
return sentiment_scores
for sentiment, indicators in self.sentiment_indicators.items():
count = 0
for indicator in indicators:
count += text.count(indicator)
sentiment_scores[sentiment] = count / total_words
# Normalize scores
total = sum(sentiment_scores.values())
if total > 0:
sentiment_scores = {k: v/total for k,
v in sentiment_scores.items()}
return sentiment_scores
def _extract_keywords(self, text: str) -> List[Tuple[str, float]]:
"""Extract important keywords with TF-IDF scores"""
try:
# Create document-term matrix
tfidf_matrix = self.vectorizer.fit_transform([text])
feature_names = self.vectorizer.get_feature_names_out()
# Get TF-IDF scores
scores = tfidf_matrix.toarray()[0]
# Create keyword-score pairs
keywords = [(feature_names[i], scores[i])
for i in range(len(feature_names))]
# Sort by score and return top keywords
keywords.sort(key=lambda x: x[1], reverse=True)
return keywords[:20] # Return top 20 keywords
except Exception as e:
logger.error(f"Error extracting keywords: {e}")
return []
def _calculate_quality_score(self, text: str, metadata: Dict = None) -> float:
"""Calculate overall document quality score"""
score = 0.0
# Text length factor (optimal length for legal documents)
word_count = len(text.split())
if 100 <= word_count <= 2000:
score += 0.3
elif word_count > 2000:
score += 0.2
else:
score += 0.1
# Legal terms density
legal_terms = self._count_legal_terms(text)
if legal_terms > 0:
density = legal_terms / word_count
if 0.01 <= density <= 0.1:
score += 0.3
elif density > 0.1:
score += 0.2
else:
score += 0.1
# Structure factor (presence of legal document structure)
structure_indicators = ["ماده", "بند", "تبصره", "فصل", "باب"]
structure_count = sum(text.count(indicator)
for indicator in structure_indicators)
if structure_count > 0:
score += 0.2
# Completeness factor
completeness_indicators = ["تاریخ", "شماره", "امضا", "مهر"]
completeness_count = sum(text.count(indicator)
for indicator in completeness_indicators)
if completeness_count >= 2:
score += 0.2
return min(score, 1.0)
def _generate_recommendations(self, text: str, metadata: Dict = None) -> List[str]:
"""Generate intelligent recommendations for the document"""
recommendations = []
# Check document completeness
if len(text.split()) < 100:
recommendations.append(
"مستندات کافی نیست. پیشنهاد میشود جزئیات بیشتری اضافه شود.")
# Check for legal structure
if "ماده" not in text and "بند" not in text:
recommendations.append(
"ساختار حقوقی مشخص نیست. پیشنهاد میشود از ساختار ماده و بند استفاده شود.")
# Check for dates and numbers
if not re.search(r'\d{1,2}/\d{1,2}/\d{2,4}', text):
recommendations.append(
"تاریخ مشخص نشده است. پیشنهاد میشود تاریخ مستندات اضافه شود.")
# Check for signatures
if "امضا" not in text and "مهر" not in text:
recommendations.append(
"امضا یا مهر مشخص نشده است. پیشنهاد میشود امضا اضافه شود.")
# Check for amounts
if not re.search(r'\d{1,3}(?:,\d{3})*', text):
recommendations.append(
"مبالغ مشخص نشده است. پیشنهاد میشود مبالغ دقیق ذکر شود.")
return recommendations
def _find_similar_documents(self, text: str) -> List[Dict[str, Any]]:
"""Find similar documents using TF-IDF and cosine similarity"""
try:
# Vectorize current document
current_vector = self.vectorizer.transform([text])
similarities = []
for doc_id, doc_vector in self.document_vectors.items():
similarity = cosine_similarity(
current_vector, doc_vector)[0][0]
similarities.append({
"document_id": doc_id,
"similarity_score": float(similarity),
"category": "similar_document"
})
# Sort by similarity and return top matches
similarities.sort(
key=lambda x: x["similarity_score"], reverse=True)
return similarities[:5] # Return top 5 similar documents
except Exception as e:
logger.error(f"Error finding similar documents: {e}")
return []
def update_document_vector(self, doc_id: str, text: str):
"""Update document vector for similarity analysis"""
try:
vector = self.vectorizer.transform([text])
self.document_vectors[doc_id] = vector
except Exception as e:
logger.error(f"Error updating document vector: {e}")
def get_ai_insights(self, documents: List[Dict]) -> Dict[str, Any]:
"""Generate AI insights from multiple documents"""
try:
insights = {
"document_trends": self._analyze_trends(documents),
"common_entities": self._find_common_entities(documents),
"category_distribution": self._analyze_category_distribution(documents),
"quality_metrics": self._calculate_overall_quality(documents),
"recommendations": self._generate_system_recommendations(documents)
}
return insights
except Exception as e:
logger.error(f"Error generating AI insights: {e}")
return {"error": str(e)}
def _analyze_trends(self, documents: List[Dict]) -> Dict[str, Any]:
"""Analyze trends across documents"""
# Implementation for trend analysis
return {"trend_analysis": "Not implemented yet"}
def _find_common_entities(self, documents: List[Dict]) -> Dict[str, List[str]]:
"""Find common entities across documents"""
# Implementation for common entity analysis
return {"common_entities": "Not implemented yet"}
def _analyze_category_distribution(self, documents: List[Dict]) -> Dict[str, int]:
"""Analyze distribution of document categories"""
# Implementation for category distribution
return {"category_distribution": "Not implemented yet"}
def _calculate_overall_quality(self, documents: List[Dict]) -> Dict[str, float]:
"""Calculate overall quality metrics"""
# Implementation for overall quality calculation
return {"overall_quality": "Not implemented yet"}
def _generate_system_recommendations(self, documents: List[Dict]) -> List[str]:
"""Generate system-wide recommendations"""
# Implementation for system recommendations
return ["سیستم در حال بهبود است"]
|