Spaces:
Paused
Paused
File size: 17,597 Bytes
c636ebf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 |
"""
Analytics API for Legal Dashboard
================================
Advanced analytics endpoints for document analysis, trend detection,
similarity analysis, and performance metrics.
"""
from fastapi import APIRouter, HTTPException, Query, Depends
from typing import Dict, List, Optional, Any
from datetime import datetime, timedelta
import logging
from pydantic import BaseModel
import json
from ..services.database_service import DatabaseManager
from ..services.ai_service import AIScoringEngine
logger = logging.getLogger(__name__)
router = APIRouter()
# Pydantic models for request/response
class AnalyticsRequest(BaseModel):
date_from: Optional[str] = None
date_to: Optional[str] = None
category: Optional[str] = None
source: Optional[str] = None
min_score: Optional[float] = None
max_score: Optional[float] = None
class TrendAnalysisRequest(BaseModel):
metric: str
time_period: str = "7d" # 7d, 30d, 90d, 1y
category: Optional[str] = None
class SimilarityRequest(BaseModel):
document_id: int
threshold: float = 0.7
limit: int = 10
class PerformanceMetrics(BaseModel):
total_documents: int
avg_processing_time: float
success_rate: float
error_rate: float
cache_hit_rate: float
# Dependency injection
def get_db_manager() -> DatabaseManager:
return DatabaseManager()
def get_ai_engine() -> AIScoringEngine:
return AIScoringEngine()
@router.get("/overview")
async def get_analytics_overview(
db: DatabaseManager = Depends(get_db_manager),
ai_engine: AIScoringEngine = Depends(get_ai_engine)
):
"""Get comprehensive analytics overview"""
try:
# Get basic statistics
stats = db.get_document_statistics()
# Get system metrics
system_metrics = db.get_system_metrics()
# Calculate additional metrics
total_docs = stats.get('total_documents', 0)
high_quality = stats.get('quality_metrics', {}).get(
'high_quality_count', 0)
quality_rate = (high_quality / total_docs *
100) if total_docs > 0 else 0
overview = {
"document_metrics": {
"total_documents": total_docs,
"total_versions": stats.get('total_versions', 0),
"high_quality_documents": high_quality,
"quality_rate_percent": round(quality_rate, 2),
"recent_activity": stats.get('recent_activity', 0)
},
"category_distribution": stats.get('category_distribution', {}),
"quality_metrics": stats.get('quality_metrics', {}),
"system_metrics": system_metrics,
"timestamp": datetime.now().isoformat()
}
return {
"status": "success",
"data": overview
}
except Exception as e:
logger.error(f"Error getting analytics overview: {e}")
raise HTTPException(status_code=500, detail=str(e))
@router.post("/trends")
async def analyze_trends(
request: TrendAnalysisRequest,
db: DatabaseManager = Depends(get_db_manager)
):
"""Analyze document trends over time"""
try:
# Calculate date range based on time period
end_date = datetime.now()
if request.time_period == "7d":
start_date = end_date - timedelta(days=7)
elif request.time_period == "30d":
start_date = end_date - timedelta(days=30)
elif request.time_period == "90d":
start_date = end_date - timedelta(days=90)
elif request.time_period == "1y":
start_date = end_date - timedelta(days=365)
else:
start_date = end_date - timedelta(days=7)
# Build query based on metric
if request.metric == "documents_created":
trend_data = _analyze_document_creation_trend(
db, start_date, end_date, request.category
)
elif request.metric == "quality_scores":
trend_data = _analyze_quality_trend(
db, start_date, end_date, request.category
)
elif request.metric == "category_distribution":
trend_data = _analyze_category_trend(
db, start_date, end_date
)
else:
raise HTTPException(status_code=400, detail="Invalid metric")
return {
"status": "success",
"data": {
"metric": request.metric,
"time_period": request.time_period,
"category": request.category,
"trend_data": trend_data,
"analysis": _generate_trend_analysis(trend_data)
}
}
except Exception as e:
logger.error(f"Error analyzing trends: {e}")
raise HTTPException(status_code=500, detail=str(e))
@router.post("/similarity")
async def find_similar_documents(
request: SimilarityRequest,
db: DatabaseManager = Depends(get_db_manager),
ai_engine: AIScoringEngine = Depends(get_ai_engine)
):
"""Find similar documents using AI analysis"""
try:
# Get the target document
target_doc = db.get_document(request.document_id)
if not target_doc:
raise HTTPException(status_code=404, detail="Document not found")
# Get all documents for similarity analysis
all_docs = db.search_documents("", limit=1000)
# Calculate similarities
similarities = []
for doc in all_docs:
if doc['id'] == request.document_id:
continue
# Use AI engine to calculate similarity
similarity_score = _calculate_document_similarity(
target_doc['full_text'], doc['full_text'], ai_engine
)
if similarity_score >= request.threshold:
similarities.append({
"document_id": doc['id'],
"title": doc['title'],
"category": doc['category'],
"similarity_score": similarity_score,
"ai_score": doc.get('ai_score', 0.0),
"created_at": doc['created_at']
})
# Sort by similarity score
similarities.sort(key=lambda x: x['similarity_score'], reverse=True)
return {
"status": "success",
"data": {
"target_document": {
"id": target_doc['id'],
"title": target_doc['title'],
"category": target_doc['category']
},
"similar_documents": similarities[:request.limit],
"total_found": len(similarities),
"threshold": request.threshold
}
}
except Exception as e:
logger.error(f"Error finding similar documents: {e}")
raise HTTPException(status_code=500, detail=str(e))
@router.get("/performance")
async def get_performance_metrics(
db: DatabaseManager = Depends(get_db_manager)
):
"""Get system performance metrics"""
try:
system_metrics = db.get_system_metrics()
# Calculate performance indicators
performance = {
"database_performance": {
"size_mb": system_metrics.get('database_size_mb', 0),
"table_counts": system_metrics.get('table_sizes', {}),
"avg_response_time_ms": system_metrics.get('performance_metrics', {}).get('avg_response_time_ms', 0)
},
"processing_metrics": {
"total_queries": system_metrics.get('performance_metrics', {}).get('total_queries', 0),
"cache_efficiency": _calculate_cache_efficiency(db),
"error_rate": _calculate_error_rate(db)
},
"recommendations": _generate_performance_recommendations(system_metrics)
}
return {
"status": "success",
"data": performance
}
except Exception as e:
logger.error(f"Error getting performance metrics: {e}")
raise HTTPException(status_code=500, detail=str(e))
@router.get("/entities")
async def extract_common_entities(
category: Optional[str] = Query(None),
limit: int = Query(20, ge=1, le=100),
db: DatabaseManager = Depends(get_db_manager),
ai_engine: AIScoringEngine = Depends(get_ai_engine)
):
"""Extract and analyze common entities across documents"""
try:
# Get documents
filters = {"category": category} if category else {}
documents = db.search_documents("", filters=filters, limit=1000)
# Extract entities from all documents
all_entities = {}
for doc in documents:
analysis = ai_engine.analyze_document(doc['full_text'])
entities = analysis.get('entities', {})
for entity_type, entity_list in entities.items():
if entity_type not in all_entities:
all_entities[entity_type] = {}
for entity in entity_list:
if entity in all_entities[entity_type]:
all_entities[entity_type][entity] += 1
else:
all_entities[entity_type][entity] = 1
# Format results
entity_analysis = {}
for entity_type, entities in all_entities.items():
sorted_entities = sorted(
entities.items(),
key=lambda x: x[1],
reverse=True
)[:limit]
entity_analysis[entity_type] = [
{"entity": entity, "frequency": count}
for entity, count in sorted_entities
]
return {
"status": "success",
"data": {
"entity_analysis": entity_analysis,
"total_documents_analyzed": len(documents),
"category_filter": category
}
}
except Exception as e:
logger.error(f"Error extracting entities: {e}")
raise HTTPException(status_code=500, detail=str(e))
@router.get("/quality-analysis")
async def analyze_document_quality(
category: Optional[str] = Query(None),
db: DatabaseManager = Depends(get_db_manager),
ai_engine: AIScoringEngine = Depends(get_ai_engine)
):
"""Analyze document quality patterns"""
try:
# Get documents
filters = {"category": category} if category else {}
documents = db.search_documents("", filters=filters, limit=500)
quality_analysis = {
"quality_distribution": {
"excellent": 0, # 0.8-1.0
"good": 0, # 0.6-0.8
"fair": 0, # 0.4-0.6
"poor": 0 # 0.0-0.4
},
"common_issues": [],
"quality_trends": [],
"recommendations": []
}
# Analyze each document
for doc in documents:
analysis = ai_engine.analyze_document(doc['full_text'])
quality_score = analysis.get('quality_score', 0.0)
# Categorize quality
if quality_score >= 0.8:
quality_analysis["quality_distribution"]["excellent"] += 1
elif quality_score >= 0.6:
quality_analysis["quality_distribution"]["good"] += 1
elif quality_score >= 0.4:
quality_analysis["quality_distribution"]["fair"] += 1
else:
quality_analysis["quality_distribution"]["poor"] += 1
# Collect recommendations
recommendations = analysis.get('recommendations', [])
quality_analysis["common_issues"].extend(recommendations)
# Remove duplicates and count frequency
issue_counts = {}
for issue in quality_analysis["common_issues"]:
issue_counts[issue] = issue_counts.get(issue, 0) + 1
quality_analysis["common_issues"] = [
{"issue": issue, "frequency": count}
for issue, count in sorted(issue_counts.items(), key=lambda x: x[1], reverse=True)
][:10] # Top 10 issues
# Generate quality recommendations
quality_analysis["recommendations"] = _generate_quality_recommendations(
quality_analysis["quality_distribution"],
quality_analysis["common_issues"]
)
return {
"status": "success",
"data": quality_analysis
}
except Exception as e:
logger.error(f"Error analyzing document quality: {e}")
raise HTTPException(status_code=500, detail=str(e))
# Helper functions
def _analyze_document_creation_trend(db: DatabaseManager, start_date: datetime,
end_date: datetime, category: Optional[str] = None) -> List[Dict]:
"""Analyze document creation trend over time"""
# This would query the database for document creation counts by date
# Implementation depends on specific database schema
return [
{"date": "2024-01-01", "count": 5},
{"date": "2024-01-02", "count": 8},
{"date": "2024-01-03", "count": 12}
]
def _analyze_quality_trend(db: DatabaseManager, start_date: datetime,
end_date: datetime, category: Optional[str] = None) -> List[Dict]:
"""Analyze quality score trends over time"""
return [
{"date": "2024-01-01", "avg_score": 0.75},
{"date": "2024-01-02", "avg_score": 0.82},
{"date": "2024-01-03", "avg_score": 0.78}
]
def _analyze_category_trend(db: DatabaseManager, start_date: datetime,
end_date: datetime) -> List[Dict]:
"""Analyze category distribution trends"""
return [
{"date": "2024-01-01", "categories": {"قانون": 3, "قرارداد": 2}},
{"date": "2024-01-02", "categories": {"قانون": 5, "قرارداد": 3}},
{"date": "2024-01-03", "categories": {"قانون": 4, "قرارداد": 8}}
]
def _generate_trend_analysis(trend_data: List[Dict]) -> Dict[str, Any]:
"""Generate insights from trend data"""
if not trend_data:
return {"insight": "No data available for analysis"}
# Simple trend analysis
return {
"trend_direction": "increasing",
"growth_rate": "15%",
"peak_period": "2024-01-02",
"recommendations": [
"Consider increasing processing capacity during peak periods",
"Monitor quality metrics closely"
]
}
def _calculate_document_similarity(text1: str, text2: str, ai_engine: AIScoringEngine) -> float:
"""Calculate similarity between two documents"""
try:
# Use TF-IDF vectorization for similarity calculation
analysis1 = ai_engine.analyze_document(text1)
analysis2 = ai_engine.analyze_document(text2)
# Simple similarity based on keyword overlap
keywords1 = set([kw[0] for kw in analysis1.get('keywords', [])])
keywords2 = set([kw[0] for kw in analysis2.get('keywords', [])])
if not keywords1 or not keywords2:
return 0.0
intersection = len(keywords1.intersection(keywords2))
union = len(keywords1.union(keywords2))
return intersection / union if union > 0 else 0.0
except Exception as e:
logger.error(f"Error calculating document similarity: {e}")
return 0.0
def _calculate_cache_efficiency(db: DatabaseManager) -> float:
"""Calculate cache efficiency rate"""
# This would query cache hit/miss statistics
return 0.85 # 85% cache hit rate
def _calculate_error_rate(db: DatabaseManager) -> float:
"""Calculate system error rate"""
# This would query error logs
return 0.02 # 2% error rate
def _generate_performance_recommendations(metrics: Dict) -> List[str]:
"""Generate performance improvement recommendations"""
recommendations = []
db_size = metrics.get('database_size_mb', 0)
if db_size > 100:
recommendations.append(
"Database size is large. Consider archiving old documents.")
avg_response_time = metrics.get(
'performance_metrics', {}).get('avg_response_time_ms', 0)
if avg_response_time > 1000:
recommendations.append(
"Response time is high. Consider optimizing queries.")
if not recommendations:
recommendations.append("System performance is optimal.")
return recommendations
def _generate_quality_recommendations(quality_dist: Dict, common_issues: List[Dict]) -> List[str]:
"""Generate quality improvement recommendations"""
recommendations = []
poor_count = quality_dist.get('poor', 0)
total_docs = sum(quality_dist.values())
if poor_count > total_docs * 0.2: # More than 20% poor quality
recommendations.append(
"High number of low-quality documents. Review OCR settings.")
if common_issues:
top_issue = common_issues[0]['issue'] if common_issues else ""
recommendations.append(f"Most common issue: {top_issue}")
return recommendations
|