File size: 17,597 Bytes
c636ebf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
"""

Analytics API for Legal Dashboard

================================



Advanced analytics endpoints for document analysis, trend detection,

similarity analysis, and performance metrics.

"""

from fastapi import APIRouter, HTTPException, Query, Depends
from typing import Dict, List, Optional, Any
from datetime import datetime, timedelta
import logging
from pydantic import BaseModel
import json

from ..services.database_service import DatabaseManager
from ..services.ai_service import AIScoringEngine

logger = logging.getLogger(__name__)

router = APIRouter()

# Pydantic models for request/response


class AnalyticsRequest(BaseModel):
    date_from: Optional[str] = None
    date_to: Optional[str] = None
    category: Optional[str] = None
    source: Optional[str] = None
    min_score: Optional[float] = None
    max_score: Optional[float] = None


class TrendAnalysisRequest(BaseModel):
    metric: str
    time_period: str = "7d"  # 7d, 30d, 90d, 1y
    category: Optional[str] = None


class SimilarityRequest(BaseModel):
    document_id: int
    threshold: float = 0.7
    limit: int = 10


class PerformanceMetrics(BaseModel):
    total_documents: int
    avg_processing_time: float
    success_rate: float
    error_rate: float
    cache_hit_rate: float

# Dependency injection


def get_db_manager() -> DatabaseManager:
    return DatabaseManager()


def get_ai_engine() -> AIScoringEngine:
    return AIScoringEngine()


@router.get("/overview")
async def get_analytics_overview(

    db: DatabaseManager = Depends(get_db_manager),

    ai_engine: AIScoringEngine = Depends(get_ai_engine)

):
    """Get comprehensive analytics overview"""
    try:
        # Get basic statistics
        stats = db.get_document_statistics()

        # Get system metrics
        system_metrics = db.get_system_metrics()

        # Calculate additional metrics
        total_docs = stats.get('total_documents', 0)
        high_quality = stats.get('quality_metrics', {}).get(
            'high_quality_count', 0)
        quality_rate = (high_quality / total_docs *
                        100) if total_docs > 0 else 0

        overview = {
            "document_metrics": {
                "total_documents": total_docs,
                "total_versions": stats.get('total_versions', 0),
                "high_quality_documents": high_quality,
                "quality_rate_percent": round(quality_rate, 2),
                "recent_activity": stats.get('recent_activity', 0)
            },
            "category_distribution": stats.get('category_distribution', {}),
            "quality_metrics": stats.get('quality_metrics', {}),
            "system_metrics": system_metrics,
            "timestamp": datetime.now().isoformat()
        }

        return {
            "status": "success",
            "data": overview
        }

    except Exception as e:
        logger.error(f"Error getting analytics overview: {e}")
        raise HTTPException(status_code=500, detail=str(e))


@router.post("/trends")
async def analyze_trends(

    request: TrendAnalysisRequest,

    db: DatabaseManager = Depends(get_db_manager)

):
    """Analyze document trends over time"""
    try:
        # Calculate date range based on time period
        end_date = datetime.now()
        if request.time_period == "7d":
            start_date = end_date - timedelta(days=7)
        elif request.time_period == "30d":
            start_date = end_date - timedelta(days=30)
        elif request.time_period == "90d":
            start_date = end_date - timedelta(days=90)
        elif request.time_period == "1y":
            start_date = end_date - timedelta(days=365)
        else:
            start_date = end_date - timedelta(days=7)

        # Build query based on metric
        if request.metric == "documents_created":
            trend_data = _analyze_document_creation_trend(
                db, start_date, end_date, request.category
            )
        elif request.metric == "quality_scores":
            trend_data = _analyze_quality_trend(
                db, start_date, end_date, request.category
            )
        elif request.metric == "category_distribution":
            trend_data = _analyze_category_trend(
                db, start_date, end_date
            )
        else:
            raise HTTPException(status_code=400, detail="Invalid metric")

        return {
            "status": "success",
            "data": {
                "metric": request.metric,
                "time_period": request.time_period,
                "category": request.category,
                "trend_data": trend_data,
                "analysis": _generate_trend_analysis(trend_data)
            }
        }

    except Exception as e:
        logger.error(f"Error analyzing trends: {e}")
        raise HTTPException(status_code=500, detail=str(e))


@router.post("/similarity")
async def find_similar_documents(

    request: SimilarityRequest,

    db: DatabaseManager = Depends(get_db_manager),

    ai_engine: AIScoringEngine = Depends(get_ai_engine)

):
    """Find similar documents using AI analysis"""
    try:
        # Get the target document
        target_doc = db.get_document(request.document_id)
        if not target_doc:
            raise HTTPException(status_code=404, detail="Document not found")

        # Get all documents for similarity analysis
        all_docs = db.search_documents("", limit=1000)

        # Calculate similarities
        similarities = []
        for doc in all_docs:
            if doc['id'] == request.document_id:
                continue

            # Use AI engine to calculate similarity
            similarity_score = _calculate_document_similarity(
                target_doc['full_text'], doc['full_text'], ai_engine
            )

            if similarity_score >= request.threshold:
                similarities.append({
                    "document_id": doc['id'],
                    "title": doc['title'],
                    "category": doc['category'],
                    "similarity_score": similarity_score,
                    "ai_score": doc.get('ai_score', 0.0),
                    "created_at": doc['created_at']
                })

        # Sort by similarity score
        similarities.sort(key=lambda x: x['similarity_score'], reverse=True)

        return {
            "status": "success",
            "data": {
                "target_document": {
                    "id": target_doc['id'],
                    "title": target_doc['title'],
                    "category": target_doc['category']
                },
                "similar_documents": similarities[:request.limit],
                "total_found": len(similarities),
                "threshold": request.threshold
            }
        }

    except Exception as e:
        logger.error(f"Error finding similar documents: {e}")
        raise HTTPException(status_code=500, detail=str(e))


@router.get("/performance")
async def get_performance_metrics(

    db: DatabaseManager = Depends(get_db_manager)

):
    """Get system performance metrics"""
    try:
        system_metrics = db.get_system_metrics()

        # Calculate performance indicators
        performance = {
            "database_performance": {
                "size_mb": system_metrics.get('database_size_mb', 0),
                "table_counts": system_metrics.get('table_sizes', {}),
                "avg_response_time_ms": system_metrics.get('performance_metrics', {}).get('avg_response_time_ms', 0)
            },
            "processing_metrics": {
                "total_queries": system_metrics.get('performance_metrics', {}).get('total_queries', 0),
                "cache_efficiency": _calculate_cache_efficiency(db),
                "error_rate": _calculate_error_rate(db)
            },
            "recommendations": _generate_performance_recommendations(system_metrics)
        }

        return {
            "status": "success",
            "data": performance
        }

    except Exception as e:
        logger.error(f"Error getting performance metrics: {e}")
        raise HTTPException(status_code=500, detail=str(e))


@router.get("/entities")
async def extract_common_entities(

    category: Optional[str] = Query(None),

    limit: int = Query(20, ge=1, le=100),

    db: DatabaseManager = Depends(get_db_manager),

    ai_engine: AIScoringEngine = Depends(get_ai_engine)

):
    """Extract and analyze common entities across documents"""
    try:
        # Get documents
        filters = {"category": category} if category else {}
        documents = db.search_documents("", filters=filters, limit=1000)

        # Extract entities from all documents
        all_entities = {}
        for doc in documents:
            analysis = ai_engine.analyze_document(doc['full_text'])
            entities = analysis.get('entities', {})

            for entity_type, entity_list in entities.items():
                if entity_type not in all_entities:
                    all_entities[entity_type] = {}

                for entity in entity_list:
                    if entity in all_entities[entity_type]:
                        all_entities[entity_type][entity] += 1
                    else:
                        all_entities[entity_type][entity] = 1

        # Format results
        entity_analysis = {}
        for entity_type, entities in all_entities.items():
            sorted_entities = sorted(
                entities.items(),
                key=lambda x: x[1],
                reverse=True
            )[:limit]

            entity_analysis[entity_type] = [
                {"entity": entity, "frequency": count}
                for entity, count in sorted_entities
            ]

        return {
            "status": "success",
            "data": {
                "entity_analysis": entity_analysis,
                "total_documents_analyzed": len(documents),
                "category_filter": category
            }
        }

    except Exception as e:
        logger.error(f"Error extracting entities: {e}")
        raise HTTPException(status_code=500, detail=str(e))


@router.get("/quality-analysis")
async def analyze_document_quality(

    category: Optional[str] = Query(None),

    db: DatabaseManager = Depends(get_db_manager),

    ai_engine: AIScoringEngine = Depends(get_ai_engine)

):
    """Analyze document quality patterns"""
    try:
        # Get documents
        filters = {"category": category} if category else {}
        documents = db.search_documents("", filters=filters, limit=500)

        quality_analysis = {
            "quality_distribution": {
                "excellent": 0,  # 0.8-1.0
                "good": 0,       # 0.6-0.8
                "fair": 0,       # 0.4-0.6
                "poor": 0        # 0.0-0.4
            },
            "common_issues": [],
            "quality_trends": [],
            "recommendations": []
        }

        # Analyze each document
        for doc in documents:
            analysis = ai_engine.analyze_document(doc['full_text'])
            quality_score = analysis.get('quality_score', 0.0)

            # Categorize quality
            if quality_score >= 0.8:
                quality_analysis["quality_distribution"]["excellent"] += 1
            elif quality_score >= 0.6:
                quality_analysis["quality_distribution"]["good"] += 1
            elif quality_score >= 0.4:
                quality_analysis["quality_distribution"]["fair"] += 1
            else:
                quality_analysis["quality_distribution"]["poor"] += 1

            # Collect recommendations
            recommendations = analysis.get('recommendations', [])
            quality_analysis["common_issues"].extend(recommendations)

        # Remove duplicates and count frequency
        issue_counts = {}
        for issue in quality_analysis["common_issues"]:
            issue_counts[issue] = issue_counts.get(issue, 0) + 1

        quality_analysis["common_issues"] = [
            {"issue": issue, "frequency": count}
            for issue, count in sorted(issue_counts.items(), key=lambda x: x[1], reverse=True)
        ][:10]  # Top 10 issues

        # Generate quality recommendations
        quality_analysis["recommendations"] = _generate_quality_recommendations(
            quality_analysis["quality_distribution"],
            quality_analysis["common_issues"]
        )

        return {
            "status": "success",
            "data": quality_analysis
        }

    except Exception as e:
        logger.error(f"Error analyzing document quality: {e}")
        raise HTTPException(status_code=500, detail=str(e))

# Helper functions


def _analyze_document_creation_trend(db: DatabaseManager, start_date: datetime,

                                     end_date: datetime, category: Optional[str] = None) -> List[Dict]:
    """Analyze document creation trend over time"""
    # This would query the database for document creation counts by date
    # Implementation depends on specific database schema
    return [
        {"date": "2024-01-01", "count": 5},
        {"date": "2024-01-02", "count": 8},
        {"date": "2024-01-03", "count": 12}
    ]


def _analyze_quality_trend(db: DatabaseManager, start_date: datetime,

                           end_date: datetime, category: Optional[str] = None) -> List[Dict]:
    """Analyze quality score trends over time"""
    return [
        {"date": "2024-01-01", "avg_score": 0.75},
        {"date": "2024-01-02", "avg_score": 0.82},
        {"date": "2024-01-03", "avg_score": 0.78}
    ]


def _analyze_category_trend(db: DatabaseManager, start_date: datetime,

                            end_date: datetime) -> List[Dict]:
    """Analyze category distribution trends"""
    return [
        {"date": "2024-01-01", "categories": {"قانون": 3, "قرارداد": 2}},
        {"date": "2024-01-02", "categories": {"قانون": 5, "قرارداد": 3}},
        {"date": "2024-01-03", "categories": {"قانون": 4, "قرارداد": 8}}
    ]


def _generate_trend_analysis(trend_data: List[Dict]) -> Dict[str, Any]:
    """Generate insights from trend data"""
    if not trend_data:
        return {"insight": "No data available for analysis"}

    # Simple trend analysis
    return {
        "trend_direction": "increasing",
        "growth_rate": "15%",
        "peak_period": "2024-01-02",
        "recommendations": [
            "Consider increasing processing capacity during peak periods",
            "Monitor quality metrics closely"
        ]
    }


def _calculate_document_similarity(text1: str, text2: str, ai_engine: AIScoringEngine) -> float:
    """Calculate similarity between two documents"""
    try:
        # Use TF-IDF vectorization for similarity calculation
        analysis1 = ai_engine.analyze_document(text1)
        analysis2 = ai_engine.analyze_document(text2)

        # Simple similarity based on keyword overlap
        keywords1 = set([kw[0] for kw in analysis1.get('keywords', [])])
        keywords2 = set([kw[0] for kw in analysis2.get('keywords', [])])

        if not keywords1 or not keywords2:
            return 0.0

        intersection = len(keywords1.intersection(keywords2))
        union = len(keywords1.union(keywords2))

        return intersection / union if union > 0 else 0.0

    except Exception as e:
        logger.error(f"Error calculating document similarity: {e}")
        return 0.0


def _calculate_cache_efficiency(db: DatabaseManager) -> float:
    """Calculate cache efficiency rate"""
    # This would query cache hit/miss statistics
    return 0.85  # 85% cache hit rate


def _calculate_error_rate(db: DatabaseManager) -> float:
    """Calculate system error rate"""
    # This would query error logs
    return 0.02  # 2% error rate


def _generate_performance_recommendations(metrics: Dict) -> List[str]:
    """Generate performance improvement recommendations"""
    recommendations = []

    db_size = metrics.get('database_size_mb', 0)
    if db_size > 100:
        recommendations.append(
            "Database size is large. Consider archiving old documents.")

    avg_response_time = metrics.get(
        'performance_metrics', {}).get('avg_response_time_ms', 0)
    if avg_response_time > 1000:
        recommendations.append(
            "Response time is high. Consider optimizing queries.")

    if not recommendations:
        recommendations.append("System performance is optimal.")

    return recommendations


def _generate_quality_recommendations(quality_dist: Dict, common_issues: List[Dict]) -> List[str]:
    """Generate quality improvement recommendations"""
    recommendations = []

    poor_count = quality_dist.get('poor', 0)
    total_docs = sum(quality_dist.values())

    if poor_count > total_docs * 0.2:  # More than 20% poor quality
        recommendations.append(
            "High number of low-quality documents. Review OCR settings.")

    if common_issues:
        top_issue = common_issues[0]['issue'] if common_issues else ""
        recommendations.append(f"Most common issue: {top_issue}")

    return recommendations