File size: 11,155 Bytes
922c3ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
"""

OCR API Router

=============



PDF processing and text extraction endpoints.

"""

from fastapi import APIRouter, HTTPException, UploadFile, File, Depends, BackgroundTasks
from typing import List, Dict, Any
import tempfile
import os
import logging
from pathlib import Path
from ..models.document_models import OCRRequest, OCRResponse
from ..services.ocr_service import OCRPipeline
from ..services.database_service import DatabaseManager
from ..services.ai_service import AIScoringEngine

logger = logging.getLogger(__name__)

router = APIRouter()

# Dependency injection


def get_ocr_pipeline():
    return OCRPipeline()


def get_db():
    return DatabaseManager()


def get_ai_engine():
    return AIScoringEngine()


@router.post("/process", response_model=OCRResponse)
async def process_pdf(

    file: UploadFile = File(...),

    language: str = "fa",

    model_name: str = None,

    ocr_pipeline: OCRPipeline = Depends(get_ocr_pipeline)

):
    """Process a PDF file and extract text"""
    try:
        # Validate file type
        if not file.filename.lower().endswith('.pdf'):
            raise HTTPException(
                status_code=400, detail="Only PDF files are supported")

        # Save uploaded file temporarily
        with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as temp_file:
            content = await file.read()
            temp_file.write(content)
            temp_file_path = temp_file.name

        try:
            # Process PDF with OCR
            result = ocr_pipeline.extract_text_from_pdf(temp_file_path)

            # Create response
            response = OCRResponse(
                success=result.get('success', False),
                extracted_text=result.get('extracted_text', ''),
                confidence=result.get('confidence', 0.0),
                processing_time=result.get('processing_time', 0.0),
                language_detected=result.get('language_detected', language),
                page_count=result.get('page_count', 0),
                error_message=result.get('error_message')
            )

            return response

        finally:
            # Clean up temporary file
            if os.path.exists(temp_file_path):
                os.unlink(temp_file_path)

    except HTTPException:
        raise
    except Exception as e:
        logger.error(f"Error processing PDF: {e}")
        raise HTTPException(status_code=500, detail="Internal server error")


@router.post("/process-and-save")
async def process_and_save_document(

    file: UploadFile = File(...),

    title: str = None,

    source: str = None,

    category: str = None,

    background_tasks: BackgroundTasks = None,

    ocr_pipeline: OCRPipeline = Depends(get_ocr_pipeline),

    db: DatabaseManager = Depends(get_db),

    ai_engine: AIScoringEngine = Depends(get_ai_engine)

):
    """Process PDF and save as document in database"""
    try:
        # Validate file type
        if not file.filename.lower().endswith('.pdf'):
            raise HTTPException(
                status_code=400, detail="Only PDF files are supported")

        # Save uploaded file temporarily
        with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as temp_file:
            content = await file.read()
            temp_file.write(content)
            temp_file_path = temp_file.name

        try:
            # Process PDF with OCR
            ocr_result = ocr_pipeline.extract_text_from_pdf(temp_file_path)

            if not ocr_result.get('success', False):
                raise HTTPException(
                    status_code=400,
                    detail=f"OCR processing failed: {ocr_result.get('error_message', 'Unknown error')}"
                )

            # Prepare document data
            document_data = {
                'title': title or file.filename,
                'source': source or 'Uploaded',
                'category': category or 'عمومی',
                'full_text': ocr_result.get('extracted_text', ''),
                'ocr_confidence': ocr_result.get('confidence', 0.0),
                'processing_time': ocr_result.get('processing_time', 0.0),
                'file_path': temp_file_path,
                'file_size': os.path.getsize(temp_file_path),
                'language': ocr_result.get('language_detected', 'fa'),
                'page_count': ocr_result.get('page_count', 0)
            }

            # Calculate AI score
            final_score = ai_engine.calculate_score(document_data)
            document_data['final_score'] = final_score

            # Predict category if not provided
            if not document_data.get('category') or document_data['category'] == 'عمومی':
                document_data['category'] = ai_engine.predict_category(
                    document_data.get('title', ''),
                    document_data.get('full_text', '')
                )

            # Extract keywords
            keywords = ai_engine.extract_keywords(
                document_data.get('full_text', ''))
            document_data['keywords'] = keywords

            # Save to database
            document_id = db.insert_document(document_data)

            # Get the created document
            created_document = db.get_document_by_id(document_id)

            return {
                "message": "Document processed and saved successfully",
                "document_id": document_id,
                "document": created_document,
                "ocr_result": ocr_result
            }

        finally:
            # Clean up temporary file
            if os.path.exists(temp_file_path):
                os.unlink(temp_file_path)

    except HTTPException:
        raise
    except Exception as e:
        logger.error(f"Error processing and saving document: {e}")
        raise HTTPException(status_code=500, detail="Internal server error")


@router.post("/batch-process")
async def batch_process_pdfs(

    files: List[UploadFile] = File(...),

    background_tasks: BackgroundTasks = None,

    ocr_pipeline: OCRPipeline = Depends(get_ocr_pipeline)

):
    """Process multiple PDF files"""
    try:
        results = []

        for file in files:
            try:
                # Validate file type
                if not file.filename.lower().endswith('.pdf'):
                    results.append({
                        "filename": file.filename,
                        "success": False,
                        "error": "Only PDF files are supported"
                    })
                    continue

                # Save uploaded file temporarily
                with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as temp_file:
                    content = await file.read()
                    temp_file.write(content)
                    temp_file_path = temp_file.name

                try:
                    # Process PDF with OCR
                    result = ocr_pipeline.extract_text_from_pdf(temp_file_path)

                    results.append({
                        "filename": file.filename,
                        "success": result.get('success', False),
                        "extracted_text": result.get('extracted_text', ''),
                        "confidence": result.get('confidence', 0.0),
                        "processing_time": result.get('processing_time', 0.0),
                        "page_count": result.get('page_count', 0),
                        "error_message": result.get('error_message')
                    })

                finally:
                    # Clean up temporary file
                    if os.path.exists(temp_file_path):
                        os.unlink(temp_file_path)

            except Exception as e:
                results.append({
                    "filename": file.filename,
                    "success": False,
                    "error": str(e)
                })

        return {
            "total_files": len(files),
            "processed_files": len([r for r in results if r.get('success', False)]),
            "results": results
        }

    except Exception as e:
        logger.error(f"Error in batch processing: {e}")
        raise HTTPException(status_code=500, detail="Internal server error")


@router.get("/quality-metrics")
async def get_ocr_quality_metrics(

    document_id: str,

    ocr_pipeline: OCRPipeline = Depends(get_ocr_pipeline),

    db: DatabaseManager = Depends(get_db)

):
    """Get OCR quality metrics for a document"""
    try:
        # Get document
        document = db.get_document_by_id(document_id)
        if not document:
            raise HTTPException(status_code=404, detail="Document not found")

        # Create extraction result for metrics
        extraction_result = {
            "extracted_text": document.get('full_text', ''),
            "confidence": document.get('ocr_confidence', 0.0)
        }

        # Calculate quality metrics
        metrics = ocr_pipeline.get_ocr_quality_metrics(extraction_result)

        return {
            "document_id": document_id,
            "metrics": metrics,
            "document_info": {
                "title": document.get('title'),
                "file_size": document.get('file_size'),
                "processing_time": document.get('processing_time'),
                "page_count": document.get('page_count', 0)
            }
        }

    except HTTPException:
        raise
    except Exception as e:
        logger.error(f"Error getting OCR quality metrics: {e}")
        raise HTTPException(status_code=500, detail="Internal server error")


@router.get("/models")
async def get_available_models():
    """Get available OCR models"""
    return {
        "models": [
            {
                "name": "microsoft/trocr-base-stage1",
                "description": "Microsoft TrOCR base model for printed text",
                "language": "multilingual",
                "type": "printed"
            },
            {
                "name": "microsoft/trocr-base-handwritten",
                "description": "Microsoft TrOCR base model for handwritten text",
                "language": "multilingual",
                "type": "handwritten"
            },
            {
                "name": "microsoft/trocr-large-stage1",
                "description": "Microsoft TrOCR large model for better accuracy",
                "language": "multilingual",
                "type": "printed"
            }
        ],
        "current_model": "microsoft/trocr-base-stage1"
    }


@router.get("/status")
async def get_ocr_status(ocr_pipeline: OCRPipeline = Depends(get_ocr_pipeline)):
    """Get OCR pipeline status"""
    return {
        "initialized": ocr_pipeline.initialized,
        "model_name": ocr_pipeline.model_name,
        "initialization_attempted": ocr_pipeline.initialization_attempted
    }