File size: 3,565 Bytes
bffff04
 
 
4d4dd90
bffff04
4d4dd90
bffff04
 
 
 
4d4dd90
2507d2f
0bc7901
4d4dd90
 
0bc7901
 
4d4dd90
 
 
 
 
40c4807
8320ccc
 
40c4807
8320ccc
40c4807
0bc7901
40c4807
 
4d4dd90
40c4807
8320ccc
4d4dd90
2507d2f
0bc7901
 
 
 
 
5e02733
0bc7901
5e02733
de8bee7
5e02733
de8bee7
 
 
 
 
 
 
 
 
 
 
 
 
0bc7901
de8bee7
 
 
 
 
 
 
5e02733
de8bee7
5e02733
8320ccc
bffff04
5e02733
 
 
 
 
 
 
de8bee7
5e02733
 
de8bee7
 
5e02733
de8bee7
 
 
 
 
 
 
 
 
 
 
5e02733
de8bee7
0bc7901
de8bee7
8320ccc
0bc7901
 
 
 
8320ccc
0bc7901
 
4d4dd90
2d554b0
0bc7901
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import sys
from pathlib import Path

import cv2

from hloc import logger
from ui.utils import DEVICE, ROOT, get_matcher_zoo, load_config

sys.path.append(str(Path(__file__).parents[1]))
from api.server import ImageMatchingAPI


def test_all(config: dict = None):
    img_path1 = ROOT / "datasets/sacre_coeur/mapping/02928139_3448003521.jpg"
    img_path2 = ROOT / "datasets/sacre_coeur/mapping/17295357_9106075285.jpg"
    image0 = cv2.imread(str(img_path1))[:, :, ::-1]  # RGB
    image1 = cv2.imread(str(img_path2))[:, :, ::-1]  # RGB

    matcher_zoo_restored = get_matcher_zoo(config["matcher_zoo"])
    for k, v in matcher_zoo_restored.items():
        if image0 is None or image1 is None:
            logger.error("Error: No images found! Please upload two images.")
        enable = config["matcher_zoo"][k].get("enable", True)
        skip_ci = config["matcher_zoo"][k].get("skip_ci", False)
        if enable and not skip_ci:
            logger.info(f"Testing {k} ...")
            api = ImageMatchingAPI(conf=v, device=DEVICE)
            api(image0, image1)
            log_path = ROOT / "experiments" / "all"
            log_path.mkdir(exist_ok=True, parents=True)
            api.visualize(log_path=log_path)
        else:
            logger.info(f"Skipping {k} ...")
    return 0


def test_one():
    img_path1 = ROOT / "datasets/sacre_coeur/mapping/02928139_3448003521.jpg"
    img_path2 = ROOT / "datasets/sacre_coeur/mapping/17295357_9106075285.jpg"
    image0 = cv2.imread(str(img_path1))[:, :, ::-1]  # RGB
    image1 = cv2.imread(str(img_path2))[:, :, ::-1]  # RGB
    # sparse
    conf = {
        "feature": {
            "output": "feats-superpoint-n4096-rmax1600",
            "model": {
                "name": "superpoint",
                "nms_radius": 3,
                "max_keypoints": 4096,
                "keypoint_threshold": 0.005,
            },
            "preprocessing": {
                "grayscale": True,
                "force_resize": True,
                "resize_max": 1600,
                "width": 640,
                "height": 480,
                "dfactor": 8,
            },
        },
        "matcher": {
            "output": "matches-NN-mutual",
            "model": {
                "name": "nearest_neighbor",
                "do_mutual_check": True,
                "match_threshold": 0.2,
            },
        },
        "dense": False,
    }
    api = ImageMatchingAPI(conf=conf, device=DEVICE)
    api(image0, image1)
    log_path = ROOT / "experiments" / "one"
    log_path.mkdir(exist_ok=True, parents=True)
    api.visualize(log_path=log_path)

    # dense
    conf = {
        "matcher": {
            "output": "matches-loftr",
            "model": {
                "name": "loftr",
                "weights": "outdoor",
                "max_keypoints": 2000,
                "match_threshold": 0.2,
            },
            "preprocessing": {
                "grayscale": True,
                "resize_max": 1024,
                "dfactor": 8,
                "width": 640,
                "height": 480,
                "force_resize": True,
            },
            "max_error": 1,
            "cell_size": 1,
        },
        "dense": True,
    }

    api = ImageMatchingAPI(conf=conf, device=DEVICE)
    api(image0, image1)
    log_path = ROOT / "experiments" / "one"
    log_path.mkdir(exist_ok=True, parents=True)
    api.visualize(log_path=log_path)
    return 0


if __name__ == "__main__":
    config = load_config(ROOT / "ui/config.yaml")
    test_one()
    test_all(config)