Spaces:
Running
Running
File size: 17,350 Bytes
8ec72bc 7ef7e3c 8ec72bc 7ef7e3c 8ec72bc 7ef7e3c 8ec72bc 7ef7e3c 8ec72bc 7ef7e3c 8ec72bc 7ef7e3c 8ec72bc 7ef7e3c 8ec72bc 7ef7e3c 8ec72bc 7ef7e3c 8ec72bc 7ef7e3c 8ec72bc 7ef7e3c 8ec72bc 7ef7e3c 8ec72bc 7ef7e3c 8ec72bc 7ef7e3c 8ec72bc 7ef7e3c 8ec72bc 7ef7e3c 8ec72bc 7ef7e3c 8ec72bc 7ef7e3c 8ec72bc 7ef7e3c 8ec72bc 7ef7e3c 8ec72bc 7ef7e3c 8ec72bc 7ef7e3c 8ec72bc 7ef7e3c 8ec72bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
# server.py
import base64
import io
import sys
import warnings
from pathlib import Path
from typing import Any, Dict, Optional, Union
import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch
import uvicorn
from fastapi import FastAPI, File, UploadFile
from fastapi.exceptions import HTTPException
from fastapi.responses import JSONResponse
from PIL import Image
sys.path.append(str(Path(__file__).parents[1]))
from api.types import ImagesInput
from hloc import DEVICE, extract_features, logger, match_dense, match_features
from hloc.utils.viz import add_text, plot_keypoints
from ui import get_version
from ui.utils import filter_matches, get_feature_model, get_model
from ui.viz import display_matches, fig2im, plot_images
warnings.simplefilter("ignore")
def decode_base64_to_image(encoding):
if encoding.startswith("data:image/"):
encoding = encoding.split(";")[1].split(",")[1]
try:
image = Image.open(io.BytesIO(base64.b64decode(encoding)))
return image
except Exception as e:
logger.warning(f"API cannot decode image: {e}")
raise HTTPException(
status_code=500, detail="Invalid encoded image"
) from e
def to_base64_nparray(encoding: str) -> np.ndarray:
return np.array(decode_base64_to_image(encoding)).astype("uint8")
class ImageMatchingAPI(torch.nn.Module):
default_conf = {
"ransac": {
"enable": True,
"estimator": "poselib",
"geometry": "homography",
"method": "RANSAC",
"reproj_threshold": 3,
"confidence": 0.9999,
"max_iter": 10000,
},
}
def __init__(
self,
conf: dict = {},
device: str = "cpu",
detect_threshold: float = 0.015,
max_keypoints: int = 1024,
match_threshold: float = 0.2,
) -> None:
"""
Initializes an instance of the ImageMatchingAPI class.
Args:
conf (dict): A dictionary containing the configuration parameters.
device (str, optional): The device to use for computation. Defaults to "cpu".
detect_threshold (float, optional): The threshold for detecting keypoints. Defaults to 0.015.
max_keypoints (int, optional): The maximum number of keypoints to extract. Defaults to 1024.
match_threshold (float, optional): The threshold for matching keypoints. Defaults to 0.2.
Returns:
None
"""
super().__init__()
self.device = device
self.conf = {**self.default_conf, **conf}
self._updata_config(detect_threshold, max_keypoints, match_threshold)
self._init_models()
if device == "cuda":
memory_allocated = torch.cuda.memory_allocated(device)
memory_reserved = torch.cuda.memory_reserved(device)
logger.info(
f"GPU memory allocated: {memory_allocated / 1024**2:.3f} MB"
)
logger.info(
f"GPU memory reserved: {memory_reserved / 1024**2:.3f} MB"
)
self.pred = None
def parse_match_config(self, conf):
if conf["dense"]:
return {
**conf,
"matcher": match_dense.confs.get(
conf["matcher"]["model"]["name"]
),
"dense": True,
}
else:
return {
**conf,
"feature": extract_features.confs.get(
conf["feature"]["model"]["name"]
),
"matcher": match_features.confs.get(
conf["matcher"]["model"]["name"]
),
"dense": False,
}
def _updata_config(
self,
detect_threshold: float = 0.015,
max_keypoints: int = 1024,
match_threshold: float = 0.2,
):
self.dense = self.conf["dense"]
if self.conf["dense"]:
try:
self.conf["matcher"]["model"][
"match_threshold"
] = match_threshold
except TypeError as e:
logger.error(e)
else:
self.conf["feature"]["model"]["max_keypoints"] = max_keypoints
self.conf["feature"]["model"][
"keypoint_threshold"
] = detect_threshold
self.extract_conf = self.conf["feature"]
self.match_conf = self.conf["matcher"]
def _init_models(self):
# initialize matcher
self.matcher = get_model(self.match_conf)
# initialize extractor
if self.dense:
self.extractor = None
else:
self.extractor = get_feature_model(self.conf["feature"])
def _forward(self, img0, img1):
if self.dense:
pred = match_dense.match_images(
self.matcher,
img0,
img1,
self.match_conf["preprocessing"],
device=self.device,
)
last_fixed = "{}".format( # noqa: F841
self.match_conf["model"]["name"]
)
else:
pred0 = extract_features.extract(
self.extractor, img0, self.extract_conf["preprocessing"]
)
pred1 = extract_features.extract(
self.extractor, img1, self.extract_conf["preprocessing"]
)
pred = match_features.match_images(self.matcher, pred0, pred1)
return pred
@torch.inference_mode()
def extract(self, img0: np.ndarray, **kwargs) -> Dict[str, np.ndarray]:
"""Extract features from a single image.
Args:
img0 (np.ndarray): image
Returns:
Dict[str, np.ndarray]: feature dict
"""
# setting prams
self.extractor.conf["max_keypoints"] = kwargs.get("max_keypoints", 512)
self.extractor.conf["keypoint_threshold"] = kwargs.get(
"keypoint_threshold", 0.0
)
pred = extract_features.extract(
self.extractor, img0, self.extract_conf["preprocessing"]
)
pred = {
k: v.cpu().detach()[0].numpy() if isinstance(v, torch.Tensor) else v
for k, v in pred.items()
}
# back to origin scale
s0 = pred["original_size"] / pred["size"]
pred["keypoints_orig"] = (
match_features.scale_keypoints(pred["keypoints"] + 0.5, s0) - 0.5
)
# TODO: rotate back
binarize = kwargs.get("binarize", False)
if binarize:
assert "descriptors" in pred
pred["descriptors"] = (pred["descriptors"] > 0).astype(np.uint8)
pred["descriptors"] = pred["descriptors"].T # N x DIM
return pred
@torch.inference_mode()
def forward(
self,
img0: np.ndarray,
img1: np.ndarray,
) -> Dict[str, np.ndarray]:
"""
Forward pass of the image matching API.
Args:
img0: A 3D NumPy array of shape (H, W, C) representing the first image.
Values are in the range [0, 1] and are in RGB mode.
img1: A 3D NumPy array of shape (H, W, C) representing the second image.
Values are in the range [0, 1] and are in RGB mode.
Returns:
A dictionary containing the following keys:
- image0_orig: The original image 0.
- image1_orig: The original image 1.
- keypoints0_orig: The keypoints detected in image 0.
- keypoints1_orig: The keypoints detected in image 1.
- mkeypoints0_orig: The raw matches between image 0 and image 1.
- mkeypoints1_orig: The raw matches between image 1 and image 0.
- mmkeypoints0_orig: The RANSAC inliers in image 0.
- mmkeypoints1_orig: The RANSAC inliers in image 1.
- mconf: The confidence scores for the raw matches.
- mmconf: The confidence scores for the RANSAC inliers.
"""
# Take as input a pair of images (not a batch)
assert isinstance(img0, np.ndarray)
assert isinstance(img1, np.ndarray)
self.pred = self._forward(img0, img1)
if self.conf["ransac"]["enable"]:
self.pred = self._geometry_check(self.pred)
return self.pred
def _geometry_check(
self,
pred: Dict[str, Any],
) -> Dict[str, Any]:
"""
Filter matches using RANSAC. If keypoints are available, filter by keypoints.
If lines are available, filter by lines. If both keypoints and lines are
available, filter by keypoints.
Args:
pred (Dict[str, Any]): dict of matches, including original keypoints.
See :func:`filter_matches` for the expected keys.
Returns:
Dict[str, Any]: filtered matches
"""
pred = filter_matches(
pred,
ransac_method=self.conf["ransac"]["method"],
ransac_reproj_threshold=self.conf["ransac"]["reproj_threshold"],
ransac_confidence=self.conf["ransac"]["confidence"],
ransac_max_iter=self.conf["ransac"]["max_iter"],
)
return pred
def visualize(
self,
log_path: Optional[Path] = None,
) -> None:
"""
Visualize the matches.
Args:
log_path (Path, optional): The directory to save the images. Defaults to None.
Returns:
None
"""
if self.conf["dense"]:
postfix = str(self.conf["matcher"]["model"]["name"])
else:
postfix = "{}_{}".format(
str(self.conf["feature"]["model"]["name"]),
str(self.conf["matcher"]["model"]["name"]),
)
titles = [
"Image 0 - Keypoints",
"Image 1 - Keypoints",
]
pred: Dict[str, Any] = self.pred
image0: np.ndarray = pred["image0_orig"]
image1: np.ndarray = pred["image1_orig"]
output_keypoints: np.ndarray = plot_images(
[image0, image1], titles=titles, dpi=300
)
if (
"keypoints0_orig" in pred.keys()
and "keypoints1_orig" in pred.keys()
):
plot_keypoints([pred["keypoints0_orig"], pred["keypoints1_orig"]])
text: str = (
f"# keypoints0: {len(pred['keypoints0_orig'])} \n"
+ f"# keypoints1: {len(pred['keypoints1_orig'])}"
)
add_text(0, text, fs=15)
output_keypoints = fig2im(output_keypoints)
# plot images with raw matches
titles = [
"Image 0 - Raw matched keypoints",
"Image 1 - Raw matched keypoints",
]
output_matches_raw, num_matches_raw = display_matches(
pred, titles=titles, tag="KPTS_RAW"
)
# plot images with ransac matches
titles = [
"Image 0 - Ransac matched keypoints",
"Image 1 - Ransac matched keypoints",
]
output_matches_ransac, num_matches_ransac = display_matches(
pred, titles=titles, tag="KPTS_RANSAC"
)
if log_path is not None:
img_keypoints_path: Path = log_path / f"img_keypoints_{postfix}.png"
img_matches_raw_path: Path = (
log_path / f"img_matches_raw_{postfix}.png"
)
img_matches_ransac_path: Path = (
log_path / f"img_matches_ransac_{postfix}.png"
)
cv2.imwrite(
str(img_keypoints_path),
output_keypoints[:, :, ::-1].copy(), # RGB -> BGR
)
cv2.imwrite(
str(img_matches_raw_path),
output_matches_raw[:, :, ::-1].copy(), # RGB -> BGR
)
cv2.imwrite(
str(img_matches_ransac_path),
output_matches_ransac[:, :, ::-1].copy(), # RGB -> BGR
)
plt.close("all")
class ImageMatchingService:
def __init__(self, conf: dict, device: str):
self.conf = conf
self.api = ImageMatchingAPI(conf=conf, device=device)
self.app = FastAPI()
self.register_routes()
def register_routes(self):
@self.app.get("/version")
async def version():
return {"version": get_version()}
@self.app.post("/v1/match")
async def match(
image0: UploadFile = File(...), image1: UploadFile = File(...)
):
"""
Handle the image matching request and return the processed result.
Args:
image0 (UploadFile): The first image file for matching.
image1 (UploadFile): The second image file for matching.
Returns:
JSONResponse: A JSON response containing the filtered match results
or an error message in case of failure.
"""
try:
# Load the images from the uploaded files
image0_array = self.load_image(image0)
image1_array = self.load_image(image1)
# Perform image matching using the API
output = self.api(image0_array, image1_array)
# Keys to skip in the output
skip_keys = ["image0_orig", "image1_orig"]
# Postprocess the output to filter unwanted data
pred = self.postprocess(output, skip_keys)
# Return the filtered prediction as a JSON response
return JSONResponse(content=pred)
except Exception as e:
# Return an error message with status code 500 in case of exception
return JSONResponse(content={"error": str(e)}, status_code=500)
@self.app.post("/v1/extract")
async def extract(input_info: ImagesInput):
"""
Extract keypoints and descriptors from images.
Args:
input_info: An object containing the image data and options.
Returns:
A list of dictionaries containing the keypoints and descriptors.
"""
try:
preds = []
for i, input_image in enumerate(input_info.data):
# Load the image from the input data
image_array = to_base64_nparray(input_image)
# Extract keypoints and descriptors
output = self.api.extract(
image_array,
max_keypoints=input_info.max_keypoints[i],
binarize=input_info.binarize,
)
# Do not return the original image and image_orig
# skip_keys = ["image", "image_orig"]
skip_keys = []
# Postprocess the output
pred = self.postprocess(output, skip_keys)
preds.append(pred)
# Return the list of extracted features
return JSONResponse(content=preds)
except Exception as e:
# Return an error message if an exception occurs
return JSONResponse(content={"error": str(e)}, status_code=500)
def load_image(self, file_path: Union[str, UploadFile]) -> np.ndarray:
"""
Reads an image from a file path or an UploadFile object.
Args:
file_path: A file path or an UploadFile object.
Returns:
A numpy array representing the image.
"""
if isinstance(file_path, str):
file_path = Path(file_path).resolve(strict=False)
else:
file_path = file_path.file
with Image.open(file_path) as img:
image_array = np.array(img)
return image_array
def postprocess(
self, output: dict, skip_keys: list, binarize: bool = True
) -> dict:
pred = {}
for key, value in output.items():
if key in skip_keys:
continue
if isinstance(value, np.ndarray):
pred[key] = value.tolist()
return pred
def run(self, host: str = "0.0.0.0", port: int = 8001):
uvicorn.run(self.app, host=host, port=port)
if __name__ == "__main__":
conf = {
"feature": {
"output": "feats-superpoint-n4096-rmax1600",
"model": {
"name": "superpoint",
"nms_radius": 3,
"max_keypoints": 4096,
"keypoint_threshold": 0.005,
},
"preprocessing": {
"grayscale": True,
"force_resize": True,
"resize_max": 1600,
"width": 640,
"height": 480,
"dfactor": 8,
},
},
"matcher": {
"output": "matches-NN-mutual",
"model": {
"name": "nearest_neighbor",
"do_mutual_check": True,
"match_threshold": 0.2,
},
},
"dense": False,
}
service = ImageMatchingService(conf=conf, device=DEVICE)
service.run()
|