File size: 11,798 Bytes
a80d6bb
 
 
 
 
 
 
 
 
 
 
c74a070
 
 
 
a80d6bb
 
 
 
 
c74a070
a80d6bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c74a070
a80d6bb
c74a070
 
 
a80d6bb
 
c74a070
a80d6bb
 
 
 
c74a070
a80d6bb
c74a070
 
a80d6bb
 
c74a070
a80d6bb
 
 
 
 
c74a070
a80d6bb
c74a070
 
 
 
 
 
 
 
 
 
a80d6bb
 
 
c74a070
a80d6bb
c74a070
 
 
a80d6bb
c74a070
 
a80d6bb
 
c74a070
 
 
a80d6bb
 
 
 
c74a070
a80d6bb
 
 
c74a070
a80d6bb
 
c74a070
a80d6bb
 
c74a070
a80d6bb
 
c74a070
a80d6bb
 
c74a070
 
 
 
 
 
a80d6bb
c74a070
 
a80d6bb
 
c74a070
 
 
 
 
 
 
 
 
 
a80d6bb
c74a070
a80d6bb
 
c74a070
a80d6bb
c74a070
 
 
 
a80d6bb
c74a070
 
a80d6bb
 
 
c74a070
 
 
 
 
 
a80d6bb
c74a070
 
 
a80d6bb
c74a070
a80d6bb
 
c74a070
a80d6bb
 
c74a070
 
 
a80d6bb
 
c74a070
a80d6bb
c74a070
a80d6bb
 
 
c74a070
 
 
a80d6bb
 
 
c74a070
 
a80d6bb
c74a070
a80d6bb
 
c74a070
 
 
a80d6bb
c74a070
a80d6bb
 
 
c74a070
 
 
 
a80d6bb
 
 
c74a070
 
 
 
 
a80d6bb
 
c74a070
 
 
 
 
 
 
 
 
a80d6bb
c74a070
 
a80d6bb
c74a070
 
 
 
 
a80d6bb
 
 
 
 
c74a070
 
 
a80d6bb
 
c74a070
 
 
 
a80d6bb
 
 
 
c74a070
 
 
 
 
 
a80d6bb
 
 
c74a070
 
 
a80d6bb
 
 
 
 
 
 
 
 
 
c74a070
 
 
a80d6bb
 
 
c74a070
 
 
a80d6bb
 
c74a070
a80d6bb
 
c74a070
a80d6bb
 
 
 
 
c74a070
 
 
 
 
a80d6bb
 
 
 
c74a070
a80d6bb
c74a070
 
 
a80d6bb
 
 
c74a070
 
 
 
a80d6bb
c74a070
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
from collections import defaultdict
import pprint
from loguru import logger
from pathlib import Path

import torch
import numpy as np
import pytorch_lightning as pl
from matplotlib import pyplot as plt

from src.models import TopicFM
from src.models.utils.supervision import (
    compute_supervision_coarse,
    compute_supervision_fine,
)
from src.losses.loss import TopicFMLoss
from src.optimizers import build_optimizer, build_scheduler
from src.utils.metrics import (
    compute_symmetrical_epipolar_errors,
    compute_pose_errors,
    aggregate_metrics,
)
from src.utils.plotting import make_matching_figures
from src.utils.comm import gather, all_gather
from src.utils.misc import lower_config, flattenList
from src.utils.profiler import PassThroughProfiler


class PL_Trainer(pl.LightningModule):
    def __init__(self, config, pretrained_ckpt=None, profiler=None, dump_dir=None):
        """
        TODO:
            - use the new version of PL logging API.
        """
        super().__init__()
        # Misc
        self.config = config  # full config
        _config = lower_config(self.config)
        self.model_cfg = lower_config(_config["model"])
        self.profiler = profiler or PassThroughProfiler()
        self.n_vals_plot = max(
            config.TRAINER.N_VAL_PAIRS_TO_PLOT // config.TRAINER.WORLD_SIZE, 1
        )

        # Matcher: TopicFM
        self.matcher = TopicFM(config=_config["model"])
        self.loss = TopicFMLoss(_config)

        # Pretrained weights
        if pretrained_ckpt:
            state_dict = torch.load(pretrained_ckpt, map_location="cpu")["state_dict"]
            self.matcher.load_state_dict(state_dict, strict=True)
            logger.info(f"Load '{pretrained_ckpt}' as pretrained checkpoint")

        # Testing
        self.dump_dir = dump_dir

    def configure_optimizers(self):
        # FIXME: The scheduler did not work properly when `--resume_from_checkpoint`
        optimizer = build_optimizer(self, self.config)
        scheduler = build_scheduler(self.config, optimizer)
        return [optimizer], [scheduler]

    def optimizer_step(
        self,
        epoch,
        batch_idx,
        optimizer,
        optimizer_idx,
        optimizer_closure,
        on_tpu,
        using_native_amp,
        using_lbfgs,
    ):
        # learning rate warm up
        warmup_step = self.config.TRAINER.WARMUP_STEP
        if self.trainer.global_step < warmup_step:
            if self.config.TRAINER.WARMUP_TYPE == "linear":
                base_lr = self.config.TRAINER.WARMUP_RATIO * self.config.TRAINER.TRUE_LR
                lr = base_lr + (
                    self.trainer.global_step / self.config.TRAINER.WARMUP_STEP
                ) * abs(self.config.TRAINER.TRUE_LR - base_lr)
                for pg in optimizer.param_groups:
                    pg["lr"] = lr
            elif self.config.TRAINER.WARMUP_TYPE == "constant":
                pass
            else:
                raise ValueError(
                    f"Unknown lr warm-up strategy: {self.config.TRAINER.WARMUP_TYPE}"
                )

        # update params
        optimizer.step(closure=optimizer_closure)
        optimizer.zero_grad()

    def _trainval_inference(self, batch):
        with self.profiler.profile("Compute coarse supervision"):
            compute_supervision_coarse(batch, self.config)

        with self.profiler.profile("TopicFM"):
            self.matcher(batch)

        with self.profiler.profile("Compute fine supervision"):
            compute_supervision_fine(batch, self.config)

        with self.profiler.profile("Compute losses"):
            self.loss(batch)

    def _compute_metrics(self, batch):
        with self.profiler.profile("Copmute metrics"):
            compute_symmetrical_epipolar_errors(
                batch
            )  # compute epi_errs for each match
            compute_pose_errors(
                batch, self.config
            )  # compute R_errs, t_errs, pose_errs for each pair

            rel_pair_names = list(zip(*batch["pair_names"]))
            bs = batch["image0"].size(0)
            metrics = {
                # to filter duplicate pairs caused by DistributedSampler
                "identifiers": ["#".join(rel_pair_names[b]) for b in range(bs)],
                "epi_errs": [
                    batch["epi_errs"][batch["m_bids"] == b].cpu().numpy()
                    for b in range(bs)
                ],
                "R_errs": batch["R_errs"],
                "t_errs": batch["t_errs"],
                "inliers": batch["inliers"],
            }
            ret_dict = {"metrics": metrics}
        return ret_dict, rel_pair_names

    def training_step(self, batch, batch_idx):
        self._trainval_inference(batch)

        # logging
        if (
            self.trainer.global_rank == 0
            and self.global_step % self.trainer.log_every_n_steps == 0
        ):
            # scalars
            for k, v in batch["loss_scalars"].items():
                self.logger.experiment.add_scalar(f"train/{k}", v, self.global_step)

            # figures
            if self.config.TRAINER.ENABLE_PLOTTING:
                compute_symmetrical_epipolar_errors(
                    batch
                )  # compute epi_errs for each match
                figures = make_matching_figures(
                    batch, self.config, self.config.TRAINER.PLOT_MODE
                )
                for k, v in figures.items():
                    self.logger.experiment.add_figure(
                        f"train_match/{k}", v, self.global_step
                    )

        return {"loss": batch["loss"]}

    def training_epoch_end(self, outputs):
        avg_loss = torch.stack([x["loss"] for x in outputs]).mean()
        if self.trainer.global_rank == 0:
            self.logger.experiment.add_scalar(
                "train/avg_loss_on_epoch", avg_loss, global_step=self.current_epoch
            )

    def validation_step(self, batch, batch_idx):
        self._trainval_inference(batch)

        ret_dict, _ = self._compute_metrics(batch)

        val_plot_interval = max(self.trainer.num_val_batches[0] // self.n_vals_plot, 1)
        figures = {self.config.TRAINER.PLOT_MODE: []}
        if batch_idx % val_plot_interval == 0:
            figures = make_matching_figures(
                batch, self.config, mode=self.config.TRAINER.PLOT_MODE
            )

        return {
            **ret_dict,
            "loss_scalars": batch["loss_scalars"],
            "figures": figures,
        }

    def validation_epoch_end(self, outputs):
        # handle multiple validation sets
        multi_outputs = (
            [outputs] if not isinstance(outputs[0], (list, tuple)) else outputs
        )
        multi_val_metrics = defaultdict(list)

        for valset_idx, outputs in enumerate(multi_outputs):
            # since pl performs sanity_check at the very begining of the training
            cur_epoch = self.trainer.current_epoch
            if (
                not self.trainer.resume_from_checkpoint
                and self.trainer.running_sanity_check
            ):
                cur_epoch = -1

            # 1. loss_scalars: dict of list, on cpu
            _loss_scalars = [o["loss_scalars"] for o in outputs]
            loss_scalars = {
                k: flattenList(all_gather([_ls[k] for _ls in _loss_scalars]))
                for k in _loss_scalars[0]
            }

            # 2. val metrics: dict of list, numpy
            _metrics = [o["metrics"] for o in outputs]
            metrics = {
                k: flattenList(all_gather(flattenList([_me[k] for _me in _metrics])))
                for k in _metrics[0]
            }
            # NOTE: all ranks need to `aggregate_merics`, but only log at rank-0
            val_metrics_4tb = aggregate_metrics(
                metrics, self.config.TRAINER.EPI_ERR_THR
            )
            for thr in [5, 10, 20]:
                multi_val_metrics[f"auc@{thr}"].append(val_metrics_4tb[f"auc@{thr}"])

            # 3. figures
            _figures = [o["figures"] for o in outputs]
            figures = {
                k: flattenList(gather(flattenList([_me[k] for _me in _figures])))
                for k in _figures[0]
            }

            # tensorboard records only on rank 0
            if self.trainer.global_rank == 0:
                for k, v in loss_scalars.items():
                    mean_v = torch.stack(v).mean()
                    self.logger.experiment.add_scalar(
                        f"val_{valset_idx}/avg_{k}", mean_v, global_step=cur_epoch
                    )

                for k, v in val_metrics_4tb.items():
                    self.logger.experiment.add_scalar(
                        f"metrics_{valset_idx}/{k}", v, global_step=cur_epoch
                    )

                for k, v in figures.items():
                    if self.trainer.global_rank == 0:
                        for plot_idx, fig in enumerate(v):
                            self.logger.experiment.add_figure(
                                f"val_match_{valset_idx}/{k}/pair-{plot_idx}",
                                fig,
                                cur_epoch,
                                close=True,
                            )
            plt.close("all")

        for thr in [5, 10, 20]:
            # log on all ranks for ModelCheckpoint callback to work properly
            self.log(
                f"auc@{thr}", torch.tensor(np.mean(multi_val_metrics[f"auc@{thr}"]))
            )  # ckpt monitors on this

    def test_step(self, batch, batch_idx):
        with self.profiler.profile("TopicFM"):
            self.matcher(batch)

        ret_dict, rel_pair_names = self._compute_metrics(batch)

        with self.profiler.profile("dump_results"):
            if self.dump_dir is not None:
                # dump results for further analysis
                keys_to_save = {"mkpts0_f", "mkpts1_f", "mconf", "epi_errs"}
                pair_names = list(zip(*batch["pair_names"]))
                bs = batch["image0"].shape[0]
                dumps = []
                for b_id in range(bs):
                    item = {}
                    mask = batch["m_bids"] == b_id
                    item["pair_names"] = pair_names[b_id]
                    item["identifier"] = "#".join(rel_pair_names[b_id])
                    for key in keys_to_save:
                        item[key] = batch[key][mask].cpu().numpy()
                    for key in ["R_errs", "t_errs", "inliers"]:
                        item[key] = batch[key][b_id]
                    dumps.append(item)
                ret_dict["dumps"] = dumps

        return ret_dict

    def test_epoch_end(self, outputs):
        # metrics: dict of list, numpy
        _metrics = [o["metrics"] for o in outputs]
        metrics = {
            k: flattenList(gather(flattenList([_me[k] for _me in _metrics])))
            for k in _metrics[0]
        }

        # [{key: [{...}, *#bs]}, *#batch]
        if self.dump_dir is not None:
            Path(self.dump_dir).mkdir(parents=True, exist_ok=True)
            _dumps = flattenList([o["dumps"] for o in outputs])  # [{...}, #bs*#batch]
            dumps = flattenList(gather(_dumps))  # [{...}, #proc*#bs*#batch]
            logger.info(
                f"Prediction and evaluation results will be saved to: {self.dump_dir}"
            )

        if self.trainer.global_rank == 0:
            print(self.profiler.summary())
            val_metrics_4tb = aggregate_metrics(
                metrics, self.config.TRAINER.EPI_ERR_THR
            )
            logger.info("\n" + pprint.pformat(val_metrics_4tb))
            if self.dump_dir is not None:
                np.save(Path(self.dump_dir) / "TopicFM_pred_eval", dumps)