File size: 4,828 Bytes
a80d6bb
 
 
 
 
 
 
 
 
c74a070
 
a80d6bb
c74a070
a80d6bb
 
 
 
 
 
 
 
 
 
 
 
c74a070
 
 
 
 
 
 
 
 
 
 
 
a80d6bb
 
c74a070
a80d6bb
 
 
 
c74a070
 
 
a80d6bb
 
 
c74a070
 
 
 
 
a80d6bb
c74a070
a80d6bb
c74a070
a80d6bb
c74a070
a80d6bb
 
 
 
 
 
 
 
c74a070
 
a80d6bb
 
c74a070
 
 
 
 
 
 
 
a80d6bb
c74a070
 
a80d6bb
 
 
c74a070
 
 
 
 
 
 
a80d6bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c74a070
a80d6bb
 
 
 
 
 
 
c74a070
 
 
a80d6bb
 
 
c74a070
 
 
a80d6bb
 
 
c74a070
 
 
a80d6bb
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter

from .score import peakiness_score


class BaseNet(nn.Module):
    """Helper class to construct a fully-convolutional network that
    extract a l2-normalized patch descriptor.
    """

    def __init__(self, inchan=3, dilated=True, dilation=1, bn=True, bn_affine=False):
        super(BaseNet, self).__init__()
        self.inchan = inchan
        self.curchan = inchan
        self.dilated = dilated
        self.dilation = dilation
        self.bn = bn
        self.bn_affine = bn_affine

    def _make_bn(self, outd):
        return nn.BatchNorm2d(outd, affine=self.bn_affine)

    def _add_conv(
        self,
        outd,
        k=3,
        stride=1,
        dilation=1,
        bn=True,
        relu=True,
        k_pool=1,
        pool_type="max",
        bias=False,
    ):
        # as in the original implementation, dilation is applied at the end of layer, so it will have impact only from next layer
        d = self.dilation * dilation
        # if self.dilated:
        #     conv_params = dict(padding=((k-1)*d)//2, dilation=d, stride=1)
        #     self.dilation *= stride
        # else:
        #     conv_params = dict(padding=((k-1)*d)//2, dilation=d, stride=stride)
        conv_params = dict(
            padding=((k - 1) * d) // 2, dilation=d, stride=stride, bias=bias
        )

        ops = nn.ModuleList([])

        ops.append(nn.Conv2d(self.curchan, outd, kernel_size=k, **conv_params))
        if bn and self.bn:
            ops.append(self._make_bn(outd))
        if relu:
            ops.append(nn.ReLU(inplace=True))
        self.curchan = outd

        if k_pool > 1:
            if pool_type == "avg":
                ops.append(torch.nn.AvgPool2d(kernel_size=k_pool))
            elif pool_type == "max":
                ops.append(torch.nn.MaxPool2d(kernel_size=k_pool))
            else:
                print(f"Error, unknown pooling type {pool_type}...")

        return nn.Sequential(*ops)


class Quad_L2Net(BaseNet):
    """Same than L2_Net, but replace the final 8x8 conv by 3 successive 2x2 convs."""

    def __init__(self, dim=128, mchan=4, relu22=False, **kw):
        BaseNet.__init__(self, **kw)
        self.conv0 = self._add_conv(8 * mchan)
        self.conv1 = self._add_conv(8 * mchan, bn=False)
        self.bn1 = self._make_bn(8 * mchan)
        self.conv2 = self._add_conv(16 * mchan, stride=2)
        self.conv3 = self._add_conv(16 * mchan, bn=False)
        self.bn3 = self._make_bn(16 * mchan)
        self.conv4 = self._add_conv(32 * mchan, stride=2)
        self.conv5 = self._add_conv(32 * mchan)
        # replace last 8x8 convolution with 3 3x3 convolutions
        self.conv6_0 = self._add_conv(32 * mchan)
        self.conv6_1 = self._add_conv(32 * mchan)
        self.conv6_2 = self._add_conv(dim, bn=False, relu=False)
        self.out_dim = dim

        self.moving_avg_params = nn.ParameterList(
            [
                Parameter(torch.tensor(1.0), requires_grad=False),
                Parameter(torch.tensor(1.0), requires_grad=False),
                Parameter(torch.tensor(1.0), requires_grad=False),
            ]
        )

    def forward(self, x):
        # x: [N, C, H, W]
        x0 = self.conv0(x)
        x1 = self.conv1(x0)
        x1_bn = self.bn1(x1)
        x2 = self.conv2(x1_bn)
        x3 = self.conv3(x2)
        x3_bn = self.bn3(x3)
        x4 = self.conv4(x3_bn)
        x5 = self.conv5(x4)
        x6_0 = self.conv6_0(x5)
        x6_1 = self.conv6_1(x6_0)
        x6_2 = self.conv6_2(x6_1)

        # calculate score map
        comb_weights = torch.tensor([1.0, 2.0, 3.0], device=x.device)
        comb_weights /= torch.sum(comb_weights)
        ksize = [3, 2, 1]
        det_score_maps = []

        for idx, xx in enumerate([x1, x3, x6_2]):
            if self.training:
                instance_max = torch.max(xx)
                self.moving_avg_params[idx].data = (
                    self.moving_avg_params[idx] * 0.99 + instance_max.detach() * 0.01
                )
            else:
                pass

            alpha, beta = peakiness_score(
                xx, self.moving_avg_params[idx].detach(), ksize=3, dilation=ksize[idx]
            )

            score_vol = alpha * beta
            det_score_map = torch.max(score_vol, dim=1, keepdim=True)[0]
            det_score_map = F.interpolate(
                det_score_map, size=x.shape[2:], mode="bilinear", align_corners=True
            )
            det_score_map = comb_weights[idx] * det_score_map
            det_score_maps.append(det_score_map)

        det_score_map = torch.sum(torch.stack(det_score_maps, dim=0), dim=0)
        # print([param.data for param in self.moving_avg_params])

        return x6_2, det_score_map, x1, x3