File size: 20,932 Bytes
437b5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
""" Organize some frequently used visualization functions. """
import cv2
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import copy
import seaborn as sns


# Plot junctions onto the image (return a separate copy)
def plot_junctions(input_image, junctions, junc_size=3, color=None):
    """
    input_image: can be 0~1 float or 0~255 uint8.
    junctions: Nx2 or 2xN np array.
    junc_size: the size of the plotted circles.
    """
    # Create image copy
    image = copy.copy(input_image)
    # Make sure the image is converted to 255 uint8
    if image.dtype == np.uint8:
        pass
    # A float type image ranging from 0~1
    elif image.dtype in [np.float32, np.float64, np.float]  and image.max() <= 2.:
        image = (image * 255.).astype(np.uint8)
    # A float type image ranging from 0.~255.
    elif image.dtype in [np.float32, np.float64, np.float] and image.mean() > 10.:
        image = image.astype(np.uint8)
    else:
        raise ValueError("[Error] Unknown image data type. Expect 0~1 float or 0~255 uint8.")

    # Check whether the image is single channel 
    if len(image.shape) == 2 or ((len(image.shape) == 3) and (image.shape[-1] == 1)):
        # Squeeze to H*W first
        image = image.squeeze()

        # Stack to channle 3
        image = np.concatenate([image[..., None] for _ in range(3)], axis=-1)

    # Junction dimensions should be N*2
    if not len(junctions.shape) == 2:
        raise ValueError("[Error] junctions should be 2-dim array.")

    # Always convert to N*2
    if junctions.shape[-1] != 2:
        if junctions.shape[0] == 2:
            junctions = junctions.T
        else:
            raise ValueError("[Error] At least one of the two dims should be 2.")
    
    # Round and convert junctions to int (and check the boundary)
    H, W = image.shape[:2]
    junctions = (np.round(junctions)).astype(np.int)
    junctions[junctions < 0] = 0 
    junctions[junctions[:, 0] >= H, 0] = H-1  # (first dim) max bounded by H-1
    junctions[junctions[:, 1] >= W, 1] = W-1  # (second dim) max bounded by W-1

    # Iterate through all the junctions
    num_junc = junctions.shape[0]
    if color is None:
        color = (0, 255., 0)
    for idx in range(num_junc):
        # Fetch one junction
        junc = junctions[idx, :]
        cv2.circle(image, tuple(np.flip(junc)), radius=junc_size, 
                    color=color, thickness=3)
    
    return image


# Plot line segements given junctions and line adjecent map
def plot_line_segments(input_image, junctions, line_map, junc_size=3, 
                       color=(0, 255., 0), line_width=1, plot_survived_junc=True):
    """
    input_image: can be 0~1 float or 0~255 uint8.
    junctions: Nx2 or 2xN np array.
    line_map: NxN np array
    junc_size: the size of the plotted circles.
    color: color of the line segments (can be string "random")
    line_width: width of the drawn segments.
    plot_survived_junc: whether we only plot the survived junctions.
    """
    # Create image copy
    image = copy.copy(input_image)
    # Make sure the image is converted to 255 uint8
    if image.dtype == np.uint8:
        pass
    # A float type image ranging from 0~1
    elif image.dtype in [np.float32, np.float64, np.float]  and image.max() <= 2.:
        image = (image * 255.).astype(np.uint8)
    # A float type image ranging from 0.~255.
    elif image.dtype in [np.float32, np.float64, np.float] and image.mean() > 10.:
        image = image.astype(np.uint8)
    else:
        raise ValueError("[Error] Unknown image data type. Expect 0~1 float or 0~255 uint8.")

    # Check whether the image is single channel 
    if len(image.shape) == 2 or ((len(image.shape) == 3) and (image.shape[-1] == 1)):
        # Squeeze to H*W first
        image = image.squeeze()

        # Stack to channle 3
        image = np.concatenate([image[..., None] for _ in range(3)], axis=-1)

    # Junction dimensions should be 2
    if not len(junctions.shape) == 2:
        raise ValueError("[Error] junctions should be 2-dim array.")

    # Always convert to N*2
    if junctions.shape[-1] != 2:
        if junctions.shape[0] == 2:
            junctions = junctions.T
        else:
            raise ValueError("[Error] At least one of the two dims should be 2.")
    
    # line_map dimension should be 2
    if not len(line_map.shape) == 2:
        raise ValueError("[Error] line_map should be 2-dim array.")

    # Color should be "random" or a list or tuple with length 3
    if color != "random":
        if not (isinstance(color, tuple) or isinstance(color, list)):
            raise ValueError("[Error] color should have type list or tuple.")
        else:
            if len(color) != 3:
                raise ValueError("[Error] color should be a list or tuple with length 3.")
    
    # Make a copy of the line_map
    line_map_tmp = copy.copy(line_map)

    # Parse line_map back to segment pairs
    segments = np.zeros([0, 4])
    for idx in range(junctions.shape[0]):
        # if no connectivity, just skip it
        if line_map_tmp[idx, :].sum() == 0:
            continue
        # record the line segment
        else:
            for idx2 in np.where(line_map_tmp[idx, :] == 1)[0]:
                p1 = np.flip(junctions[idx, :])     # Convert to xy format
                p2 = np.flip(junctions[idx2, :])    # Convert to xy format
                segments = np.concatenate((segments, np.array([p1[0], p1[1], p2[0], p2[1]])[None, ...]), axis=0)
                
                # Update line_map
                line_map_tmp[idx, idx2] = 0
                line_map_tmp[idx2, idx] = 0
    
    # Draw segment pairs
    for idx in range(segments.shape[0]):
        seg = np.round(segments[idx, :]).astype(np.int)
        # Decide the color
        if color != "random":
            color = tuple(color)
        else:
            color = tuple(np.random.rand(3,))
        cv2.line(image, tuple(seg[:2]), tuple(seg[2:]), color=color, thickness=line_width)

    # Also draw the junctions
    if not plot_survived_junc:
        num_junc = junctions.shape[0]
        for idx in range(num_junc):
            # Fetch one junction
            junc = junctions[idx, :]
            cv2.circle(image, tuple(np.flip(junc)), radius=junc_size, 
                    color=(0, 255., 0), thickness=3) 
    # Only plot the junctions which are part of a line segment
    else:
        for idx in range(segments.shape[0]):
            seg = np.round(segments[idx, :]).astype(np.int) # Already in HW format.
            cv2.circle(image, tuple(seg[:2]), radius=junc_size, 
                    color=(0, 255., 0), thickness=3)
            cv2.circle(image, tuple(seg[2:]), radius=junc_size, 
                    color=(0, 255., 0), thickness=3)
      
    return image


# Plot line segments given Nx4 or Nx2x2 line segments
def plot_line_segments_from_segments(input_image, line_segments, junc_size=3, 
                                     color=(0, 255., 0), line_width=1):
    # Create image copy
    image = copy.copy(input_image)
    # Make sure the image is converted to 255 uint8
    if image.dtype == np.uint8:
        pass
    # A float type image ranging from 0~1
    elif image.dtype in [np.float32, np.float64, np.float]  and image.max() <= 2.:
        image = (image * 255.).astype(np.uint8)
    # A float type image ranging from 0.~255.
    elif image.dtype in [np.float32, np.float64, np.float] and image.mean() > 10.:
        image = image.astype(np.uint8)
    else:
        raise ValueError("[Error] Unknown image data type. Expect 0~1 float or 0~255 uint8.")

    # Check whether the image is single channel 
    if len(image.shape) == 2 or ((len(image.shape) == 3) and (image.shape[-1] == 1)):
        # Squeeze to H*W first
        image = image.squeeze()

        # Stack to channle 3
        image = np.concatenate([image[..., None] for _ in range(3)], axis=-1)
    
    # Check the if line_segments are in (1) Nx4, or (2) Nx2x2.
    H, W, _ = image.shape
    # (1) Nx4 format
    if len(line_segments.shape) == 2 and line_segments.shape[-1] == 4:
        # Round to int32
        line_segments = line_segments.astype(np.int32)

        # Clip H dimension
        line_segments[:, 0] = np.clip(line_segments[:, 0], a_min=0, a_max=H-1)
        line_segments[:, 2] = np.clip(line_segments[:, 2], a_min=0, a_max=H-1)

        # Clip W dimension
        line_segments[:, 1] = np.clip(line_segments[:, 1], a_min=0, a_max=W-1)
        line_segments[:, 3] = np.clip(line_segments[:, 3], a_min=0, a_max=W-1)

        # Convert to Nx2x2 format
        line_segments = np.concatenate(
            [np.expand_dims(line_segments[:, :2], axis=1),       
            np.expand_dims(line_segments[:, 2:], axis=1)],
            axis=1
        )

    # (2) Nx2x2 format
    elif len(line_segments.shape) == 3 and line_segments.shape[-1] == 2:
        # Round to int32
        line_segments = line_segments.astype(np.int32)

        # Clip H dimension
        line_segments[:, :, 0] = np.clip(line_segments[:, :, 0], a_min=0, a_max=H-1)
        line_segments[:, :, 1] = np.clip(line_segments[:, :, 1], a_min=0, a_max=W-1)

    else:
        raise ValueError("[Error] line_segments should be either Nx4 or Nx2x2 in HW format.")

    # Draw segment pairs (all segments should be in HW format)
    image = image.copy()
    for idx in range(line_segments.shape[0]):
        seg = np.round(line_segments[idx, :, :]).astype(np.int32)
        # Decide the color
        if color != "random":
            color = tuple(color)
        else:
            color = tuple(np.random.rand(3,))
        cv2.line(image, tuple(np.flip(seg[0, :])), 
                        tuple(np.flip(seg[1, :])), 
                        color=color, thickness=line_width)

        # Also draw the junctions
        cv2.circle(image, tuple(np.flip(seg[0, :])), radius=junc_size, color=(0, 255., 0), thickness=3)
        cv2.circle(image, tuple(np.flip(seg[1, :])), radius=junc_size, color=(0, 255., 0), thickness=3)
    
    return image


# Additional functions to visualize multiple images at the same time,
# e.g. for line matching
def plot_images(imgs, titles=None, cmaps='gray', dpi=100, size=6, pad=.5):
    """Plot a set of images horizontally.
    Args:
        imgs: a list of NumPy or PyTorch images, RGB (H, W, 3) or mono (H, W).
        titles: a list of strings, as titles for each image.
        cmaps: colormaps for monochrome images.
    """
    n = len(imgs)
    if not isinstance(cmaps, (list, tuple)):
        cmaps = [cmaps] * n
    figsize = (size*n, size*3/4) if size is not None else None
    fig, ax = plt.subplots(1, n, figsize=figsize, dpi=dpi)
    if n == 1:
        ax = [ax]
    for i in range(n):
        ax[i].imshow(imgs[i], cmap=plt.get_cmap(cmaps[i]))
        ax[i].get_yaxis().set_ticks([])
        ax[i].get_xaxis().set_ticks([])
        ax[i].set_axis_off()
        for spine in ax[i].spines.values():  # remove frame
            spine.set_visible(False)
        if titles:
            ax[i].set_title(titles[i])
    fig.tight_layout(pad=pad)


def plot_keypoints(kpts, colors='lime', ps=4):
    """Plot keypoints for existing images.
    Args:
        kpts: list of ndarrays of size (N, 2).
        colors: string, or list of list of tuples (one for each keypoints).
        ps: size of the keypoints as float.
    """
    if not isinstance(colors, list):
        colors = [colors] * len(kpts)
    axes = plt.gcf().axes
    for a, k, c in zip(axes, kpts, colors):
        a.scatter(k[:, 0], k[:, 1], c=c, s=ps, linewidths=0)


def plot_matches(kpts0, kpts1, color=None, lw=1.5, ps=4, indices=(0, 1), a=1.):
    """Plot matches for a pair of existing images.
    Args:
        kpts0, kpts1: corresponding keypoints of size (N, 2).
        color: color of each match, string or RGB tuple. Random if not given.
        lw: width of the lines.
        ps: size of the end points (no endpoint if ps=0)
        indices: indices of the images to draw the matches on.
        a: alpha opacity of the match lines.
    """
    fig = plt.gcf()
    ax = fig.axes
    assert len(ax) > max(indices)
    ax0, ax1 = ax[indices[0]], ax[indices[1]]
    fig.canvas.draw()

    assert len(kpts0) == len(kpts1)
    if color is None:
        color = matplotlib.cm.hsv(np.random.rand(len(kpts0))).tolist()
    elif len(color) > 0 and not isinstance(color[0], (tuple, list)):
        color = [color] * len(kpts0)

    if lw > 0:
        # transform the points into the figure coordinate system
        transFigure = fig.transFigure.inverted()
        fkpts0 = transFigure.transform(ax0.transData.transform(kpts0))
        fkpts1 = transFigure.transform(ax1.transData.transform(kpts1))
        fig.lines += [matplotlib.lines.Line2D(
            (fkpts0[i, 0], fkpts1[i, 0]), (fkpts0[i, 1], fkpts1[i, 1]),
            zorder=1, transform=fig.transFigure, c=color[i], linewidth=lw,
            alpha=a)
            for i in range(len(kpts0))]

    # freeze the axes to prevent the transform to change
    ax0.autoscale(enable=False)
    ax1.autoscale(enable=False)

    if ps > 0:
        ax0.scatter(kpts0[:, 0], kpts0[:, 1], c=color, s=ps, zorder=2)
        ax1.scatter(kpts1[:, 0], kpts1[:, 1], c=color, s=ps, zorder=2)


def plot_lines(lines, line_colors='orange', point_colors='cyan',
               ps=4, lw=2, indices=(0, 1)):
    """Plot lines and endpoints for existing images.
    Args:
        lines: list of ndarrays of size (N, 2, 2).
        colors: string, or list of list of tuples (one for each keypoints).
        ps: size of the keypoints as float pixels.
        lw: line width as float pixels.
        indices: indices of the images to draw the matches on.
    """
    if not isinstance(line_colors, list):
        line_colors = [line_colors] * len(lines)
    if not isinstance(point_colors, list):
        point_colors = [point_colors] * len(lines)

    fig = plt.gcf()
    ax = fig.axes
    assert len(ax) > max(indices)
    axes = [ax[i] for i in indices]
    fig.canvas.draw()

    # Plot the lines and junctions
    for a, l, lc, pc in zip(axes, lines, line_colors, point_colors):
        for i in range(len(l)):
            line = matplotlib.lines.Line2D((l[i, 0, 0], l[i, 1, 0]),
                                           (l[i, 0, 1], l[i, 1, 1]),
                                           zorder=1, c=lc, linewidth=lw)
            a.add_line(line)
        pts = l.reshape(-1, 2)
        a.scatter(pts[:, 0], pts[:, 1],
                  c=pc, s=ps, linewidths=0, zorder=2)


def plot_line_matches(kpts0, kpts1, color=None, lw=1.5, indices=(0, 1), a=1.):
    """Plot matches for a pair of existing images, parametrized by their middle point.
    Args:
        kpts0, kpts1: corresponding middle points of the lines of size (N, 2).
        color: color of each match, string or RGB tuple. Random if not given.
        lw: width of the lines.
        indices: indices of the images to draw the matches on.
        a: alpha opacity of the match lines.
    """
    fig = plt.gcf()
    ax = fig.axes
    assert len(ax) > max(indices)
    ax0, ax1 = ax[indices[0]], ax[indices[1]]
    fig.canvas.draw()

    assert len(kpts0) == len(kpts1)
    if color is None:
        color = matplotlib.cm.hsv(np.random.rand(len(kpts0))).tolist()
    elif len(color) > 0 and not isinstance(color[0], (tuple, list)):
        color = [color] * len(kpts0)

    if lw > 0:
        # transform the points into the figure coordinate system
        transFigure = fig.transFigure.inverted()
        fkpts0 = transFigure.transform(ax0.transData.transform(kpts0))
        fkpts1 = transFigure.transform(ax1.transData.transform(kpts1))
        fig.lines += [matplotlib.lines.Line2D(
            (fkpts0[i, 0], fkpts1[i, 0]), (fkpts0[i, 1], fkpts1[i, 1]),
            zorder=1, transform=fig.transFigure, c=color[i], linewidth=lw,
            alpha=a)
            for i in range(len(kpts0))]

    # freeze the axes to prevent the transform to change
    ax0.autoscale(enable=False)
    ax1.autoscale(enable=False)


def plot_color_line_matches(lines, correct_matches=None,
                            lw=2, indices=(0, 1)):
    """Plot line matches for existing images with multiple colors.
    Args:
        lines: list of ndarrays of size (N, 2, 2).
        correct_matches: bool array of size (N,) indicating correct matches.
        lw: line width as float pixels.
        indices: indices of the images to draw the matches on.
    """
    n_lines = len(lines[0])
    colors = sns.color_palette('husl', n_colors=n_lines)
    np.random.shuffle(colors)
    alphas = np.ones(n_lines)
    # If correct_matches is not None, display wrong matches with a low alpha
    if correct_matches is not None:
        alphas[~np.array(correct_matches)] = 0.2

    fig = plt.gcf()
    ax = fig.axes
    assert len(ax) > max(indices)
    axes = [ax[i] for i in indices]
    fig.canvas.draw()

    # Plot the lines
    for a, l in zip(axes, lines):
        # Transform the points into the figure coordinate system
        transFigure = fig.transFigure.inverted()
        endpoint0 = transFigure.transform(a.transData.transform(l[:, 0]))
        endpoint1 = transFigure.transform(a.transData.transform(l[:, 1]))
        fig.lines += [matplotlib.lines.Line2D(
            (endpoint0[i, 0], endpoint1[i, 0]),
            (endpoint0[i, 1], endpoint1[i, 1]),
            zorder=1, transform=fig.transFigure, c=colors[i],
            alpha=alphas[i], linewidth=lw) for i in range(n_lines)]


def plot_color_lines(lines, correct_matches, wrong_matches,
                     lw=2, indices=(0, 1)):
    """Plot line matches for existing images with multiple colors:
    green for correct matches, red for wrong ones, and blue for the rest.
    Args:
        lines: list of ndarrays of size (N, 2, 2).
        correct_matches: list of bool arrays of size N with correct matches.
        wrong_matches: list of bool arrays of size (N,) with correct matches.
        lw: line width as float pixels.
        indices: indices of the images to draw the matches on.
    """
    # palette = sns.color_palette()
    palette = sns.color_palette("hls", 8)
    blue = palette[5]  # palette[0]
    red = palette[0]  # palette[3]
    green = palette[2]  # palette[2]
    colors = [np.array([blue] * len(l)) for l in lines]
    for i, c in enumerate(colors):
        c[np.array(correct_matches[i])] = green
        c[np.array(wrong_matches[i])] = red

    fig = plt.gcf()
    ax = fig.axes
    assert len(ax) > max(indices)
    axes = [ax[i] for i in indices]
    fig.canvas.draw()

    # Plot the lines
    for a, l, c in zip(axes, lines, colors):
        # Transform the points into the figure coordinate system
        transFigure = fig.transFigure.inverted()
        endpoint0 = transFigure.transform(a.transData.transform(l[:, 0]))
        endpoint1 = transFigure.transform(a.transData.transform(l[:, 1]))
        fig.lines += [matplotlib.lines.Line2D(
            (endpoint0[i, 0], endpoint1[i, 0]),
            (endpoint0[i, 1], endpoint1[i, 1]),
            zorder=1, transform=fig.transFigure, c=c[i],
            linewidth=lw) for i in range(len(l))]


def plot_subsegment_matches(lines, subsegments, lw=2, indices=(0, 1)):
    """ Plot line matches for existing images with multiple colors and
        highlight the actually matched subsegments.
    Args:
        lines: list of ndarrays of size (N, 2, 2).
        subsegments: list of ndarrays of size (N, 2, 2).
        lw: line width as float pixels.
        indices: indices of the images to draw the matches on.
    """
    n_lines = len(lines[0])
    colors = sns.cubehelix_palette(start=2, rot=-0.2, dark=0.3, light=.7,
                                   gamma=1.3, hue=1, n_colors=n_lines)

    fig = plt.gcf()
    ax = fig.axes
    assert len(ax) > max(indices)
    axes = [ax[i] for i in indices]
    fig.canvas.draw()

    # Plot the lines
    for a, l, ss in zip(axes, lines, subsegments):
        # Transform the points into the figure coordinate system
        transFigure = fig.transFigure.inverted()

        # Draw full line
        endpoint0 = transFigure.transform(a.transData.transform(l[:, 0]))
        endpoint1 = transFigure.transform(a.transData.transform(l[:, 1]))
        fig.lines += [matplotlib.lines.Line2D(
            (endpoint0[i, 0], endpoint1[i, 0]),
            (endpoint0[i, 1], endpoint1[i, 1]),
            zorder=1, transform=fig.transFigure, c='red',
            alpha=0.7, linewidth=lw) for i in range(n_lines)]

        # Draw matched subsegment
        endpoint0 = transFigure.transform(a.transData.transform(ss[:, 0]))
        endpoint1 = transFigure.transform(a.transData.transform(ss[:, 1]))
        fig.lines += [matplotlib.lines.Line2D(
            (endpoint0[i, 0], endpoint1[i, 0]),
            (endpoint0[i, 1], endpoint1[i, 1]),
            zorder=1, transform=fig.transFigure, c=colors[i],
            alpha=1, linewidth=lw) for i in range(n_lines)]