Spaces:
Running
Running
File size: 15,986 Bytes
63f3cf2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
# -*- coding: UTF-8 -*-
'''=================================================
@Project -> File pram -> tracker
@IDE PyCharm
@Author fx221@cam.ac.uk
@Date 29/02/2024 16:58
=================================================='''
import time
import cv2
import numpy as np
import torch
import pycolmap
from localization.frame import Frame
from localization.base_model import dynamic_load
import localization.matchers as matchers
from localization.match_features_batch import confs as matcher_confs
from recognition.vis_seg import vis_seg_point, generate_color_dic, vis_inlier, plot_matches
from tools.common import resize_img
class Tracker:
def __init__(self, locMap, matcher, config):
self.locMap = locMap
self.matcher = matcher
self.config = config
self.loc_config = config['localization']
self.lost = True
self.curr_frame = None
self.last_frame = None
device = 'cuda' if torch.cuda.is_available() else 'cpu'
Model = dynamic_load(matchers, 'nearest_neighbor')
self.nn_matcher = Model(matcher_confs['NNM']['model']).eval().to(device)
def run(self, frame: Frame):
print('Start tracking...')
show = self.config['localization']['show']
self.curr_frame = frame
ref_img = self.last_frame.image
curr_img = self.curr_frame.image
q_kpts = frame.keypoints
t_start = time.time()
ret = self.track_last_frame(curr_frame=self.curr_frame, last_frame=self.last_frame)
self.curr_frame.time_loc = self.curr_frame.time_loc + time.time() - t_start
if show:
curr_matched_kpts = ret['matched_keypoints']
ref_matched_kpts = ret['matched_ref_keypoints']
img_loc_matching = plot_matches(img1=curr_img, img2=ref_img,
pts1=curr_matched_kpts,
pts2=ref_matched_kpts,
inliers=np.array([True for i in range(curr_matched_kpts.shape[0])]),
radius=9, line_thickness=3)
self.curr_frame.image_matching = img_loc_matching
q_ref_img_matching = resize_img(img_loc_matching, nh=512)
if not ret['success']:
show_text = 'Tracking FAILED!'
img_inlier = vis_inlier(img=curr_img, kpts=curr_matched_kpts,
inliers=[False for i in range(curr_matched_kpts.shape[0])], radius=9 + 2,
thickness=2)
q_img_inlier = cv2.putText(img=img_inlier, text=show_text, org=(30, 30),
fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0, 0, 255),
thickness=2, lineType=cv2.LINE_AA)
q_img_loc = np.hstack([resize_img(q_ref_img_matching, nh=512), resize_img(q_img_inlier, nh=512)])
cv2.imshow('loc', q_img_loc)
key = cv2.waitKey(self.loc_config['show_time'])
if key == ord('q'):
cv2.destroyAllWindows()
exit(0)
return False
ret['matched_scene_name'] = self.last_frame.scene_name
success = self.verify_and_update(q_frame=self.curr_frame, ret=ret)
if not success:
return False
if ret['num_inliers'] < 256:
# refinement is necessary for tracking last frame
t_start = time.time()
ret = self.locMap.sub_maps[self.last_frame.matched_scene_name].refine_pose(self.curr_frame,
refinement_method=
self.loc_config[
'refinement_method'])
self.curr_frame.time_ref = self.curr_frame.time_ref + time.time() - t_start
ret['matched_scene_name'] = self.last_frame.scene_name
success = self.verify_and_update(q_frame=self.curr_frame, ret=ret)
if show:
q_err, t_err = self.curr_frame.compute_pose_error()
num_matches = ret['matched_keypoints'].shape[0]
num_inliers = ret['num_inliers']
show_text = 'Tracking, k/m/i: {:d}/{:d}/{:d}'.format(q_kpts.shape[0], num_matches, num_inliers)
q_img_inlier = vis_inlier(img=curr_img, kpts=ret['matched_keypoints'], inliers=ret['inliers'],
radius=9 + 2, thickness=2)
q_img_inlier = cv2.putText(img=q_img_inlier, text=show_text, org=(30, 30),
fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0, 0, 255),
thickness=2, lineType=cv2.LINE_AA)
show_text = 'r_err:{:.2f}, t_err:{:.2f}'.format(q_err, t_err)
q_img_inlier = cv2.putText(img=q_img_inlier, text=show_text, org=(30, 80),
fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0, 0, 255),
thickness=2, lineType=cv2.LINE_AA)
self.curr_frame.image_inlier = q_img_inlier
q_img_loc = np.hstack([resize_img(q_ref_img_matching, nh=512), resize_img(q_img_inlier, nh=512)])
cv2.imshow('loc', q_img_loc)
key = cv2.waitKey(self.loc_config['show_time'])
if key == ord('q'):
cv2.destroyAllWindows()
exit(0)
self.lost = success
return success
def verify_and_update(self, q_frame: Frame, ret: dict):
num_matches = ret['matched_keypoints'].shape[0]
num_inliers = ret['num_inliers']
q_frame.qvec = ret['qvec']
q_frame.tvec = ret['tvec']
q_err, t_err = q_frame.compute_pose_error()
if num_inliers < self.loc_config['min_inliers']:
print_text = 'Failed due to insufficient {:d} inliers, q_err: {:.2f}, t_err: {:.2f}'.format(
ret['num_inliers'], q_err, t_err)
print(print_text)
q_frame.tracking_status = False
q_frame.clear_localization_track()
return False
else:
print_text = 'Succeed! Find {}/{} 2D-3D inliers,q_err: {:.2f}, t_err: {:.2f}'.format(
num_inliers, num_matches, q_err, t_err)
print(print_text)
q_frame.tracking_status = True
self.update_current_frame(curr_frame=q_frame, ret=ret)
return True
def update_current_frame(self, curr_frame: Frame, ret: dict):
curr_frame.qvec = ret['qvec']
curr_frame.tvec = ret['tvec']
curr_frame.matched_scene_name = ret['matched_scene_name']
curr_frame.reference_frame_id = ret['reference_frame_id']
inliers = np.array(ret['inliers'])
curr_frame.matched_keypoints = ret['matched_keypoints'][inliers]
curr_frame.matched_xyzs = ret['matched_xyzs'][inliers]
curr_frame.matched_point3D_ids = ret['matched_point3D_ids'][inliers]
curr_frame.matched_keypoint_ids = ret['matched_keypoint_ids'][inliers]
curr_frame.matched_sids = ret['matched_sids'][inliers]
def track_last_frame(self, curr_frame: Frame, last_frame: Frame):
curr_kpts = curr_frame.keypoints[:, :2]
curr_scores = curr_frame.keypoints[:, 2]
curr_descs = curr_frame.descriptors
curr_kpt_ids = np.arange(curr_kpts.shape[0])
last_kpts = last_frame.keypoints[:, :2]
last_scores = last_frame.keypoints[:, 2]
last_descs = last_frame.descriptors
last_xyzs = last_frame.xyzs
last_point3D_ids = last_frame.point3D_ids
last_sids = last_frame.seg_ids
# '''
indices = self.matcher({
'descriptors0': torch.from_numpy(curr_descs)[None].cuda().float(),
'keypoints0': torch.from_numpy(curr_kpts)[None].cuda().float(),
'scores0': torch.from_numpy(curr_scores)[None].cuda().float(),
'image_shape0': (1, 3, curr_frame.camera.width, curr_frame.camera.height),
'descriptors1': torch.from_numpy(last_descs)[None].cuda().float(),
'keypoints1': torch.from_numpy(last_kpts)[None].cuda().float(),
'scores1': torch.from_numpy(last_scores)[None].cuda().float(),
'image_shape1': (1, 3, last_frame.camera.width, last_frame.camera.height),
})['matches0'][0].cpu().numpy()
'''
indices = self.nn_matcher({
'descriptors0': torch.from_numpy(curr_descs.transpose()).float().cuda()[None],
'descriptors1': torch.from_numpy(last_descs.transpose()).float().cuda()[None],
})['matches0'][0].cpu().numpy()
'''
valid = (indices >= 0)
matched_point3D_ids = last_point3D_ids[indices[valid]]
point3D_mask = (matched_point3D_ids >= 0)
matched_point3D_ids = matched_point3D_ids[point3D_mask]
matched_sids = last_sids[indices[valid]][point3D_mask]
matched_kpts = curr_kpts[valid][point3D_mask]
matched_kpt_ids = curr_kpt_ids[valid][point3D_mask]
matched_xyzs = last_xyzs[indices[valid]][point3D_mask]
matched_last_kpts = last_kpts[indices[valid]][point3D_mask]
print('Tracking: {:d} matches from {:d}-{:d} kpts'.format(matched_kpts.shape[0], curr_kpts.shape[0],
last_kpts.shape[0]))
# print('tracking: ', matched_kpts.shape, matched_xyzs.shape)
ret = pycolmap.absolute_pose_estimation(matched_kpts + 0.5, matched_xyzs,
curr_frame.camera,
estimation_options={
"ransac": {"max_error": self.config['localization']['threshold']}},
refinement_options={},
# max_error_px=self.config['localization']['threshold']
)
if ret is None:
ret = {'success': False, }
else:
ret['success'] = True
ret['qvec'] = ret['cam_from_world'].rotation.quat[[3, 0, 1, 2]]
ret['tvec'] = ret['cam_from_world'].translation
ret['matched_keypoints'] = matched_kpts
ret['matched_keypoint_ids'] = matched_kpt_ids
ret['matched_ref_keypoints'] = matched_last_kpts
ret['matched_xyzs'] = matched_xyzs
ret['matched_point3D_ids'] = matched_point3D_ids
ret['matched_sids'] = matched_sids
ret['reference_frame_id'] = last_frame.reference_frame_id
ret['matched_scene_name'] = last_frame.matched_scene_name
return ret
def track_last_frame_fast(self, curr_frame: Frame, last_frame: Frame):
curr_kpts = curr_frame.keypoints[:, :2]
curr_scores = curr_frame.keypoints[:, 2]
curr_descs = curr_frame.descriptors
curr_kpt_ids = np.arange(curr_kpts.shape[0])
last_point3D_ids = last_frame.point3D_ids
point3D_mask = (last_point3D_ids >= 0)
last_kpts = last_frame.keypoints[:, :2][point3D_mask]
last_scores = last_frame.keypoints[:, 2][point3D_mask]
last_descs = last_frame.descriptors[point3D_mask]
last_xyzs = last_frame.xyzs[point3D_mask]
last_sids = last_frame.seg_ids[point3D_mask]
minx = np.min(last_kpts[:, 0])
maxx = np.max(last_kpts[:, 0])
miny = np.min(last_kpts[:, 1])
maxy = np.max(last_kpts[:, 1])
curr_mask = (curr_kpts[:, 0] >= minx) * (curr_kpts[:, 0] <= maxx) * (curr_kpts[:, 1] >= miny) * (
curr_kpts[:, 1] <= maxy)
curr_kpts = curr_kpts[curr_mask]
curr_scores = curr_scores[curr_mask]
curr_descs = curr_descs[curr_mask]
curr_kpt_ids = curr_kpt_ids[curr_mask]
# '''
indices = self.matcher({
'descriptors0': torch.from_numpy(curr_descs)[None].cuda().float(),
'keypoints0': torch.from_numpy(curr_kpts)[None].cuda().float(),
'scores0': torch.from_numpy(curr_scores)[None].cuda().float(),
'image_shape0': (1, 3, curr_frame.camera.width, curr_frame.camera.height),
'descriptors1': torch.from_numpy(last_descs)[None].cuda().float(),
'keypoints1': torch.from_numpy(last_kpts)[None].cuda().float(),
'scores1': torch.from_numpy(last_scores)[None].cuda().float(),
'image_shape1': (1, 3, last_frame.camera.width, last_frame.camera.height),
})['matches0'][0].cpu().numpy()
'''
indices = self.nn_matcher({
'descriptors0': torch.from_numpy(curr_descs.transpose()).float().cuda()[None],
'descriptors1': torch.from_numpy(last_descs.transpose()).float().cuda()[None],
})['matches0'][0].cpu().numpy()
'''
valid = (indices >= 0)
matched_point3D_ids = last_point3D_ids[indices[valid]]
matched_sids = last_sids[indices[valid]]
matched_kpts = curr_kpts[valid]
matched_kpt_ids = curr_kpt_ids[valid]
matched_xyzs = last_xyzs[indices[valid]]
matched_last_kpts = last_kpts[indices[valid]]
print('Tracking: {:d} matches from {:d}-{:d} kpts'.format(matched_kpts.shape[0], curr_kpts.shape[0],
last_kpts.shape[0]))
# print('tracking: ', matched_kpts.shape, matched_xyzs.shape)
ret = pycolmap.absolute_pose_estimation(matched_kpts + 0.5, matched_xyzs,
curr_frame.camera._asdict(),
max_error_px=self.config['localization']['threshold'])
ret['matched_keypoints'] = matched_kpts
ret['matched_keypoint_ids'] = matched_kpt_ids
ret['matched_ref_keypoints'] = matched_last_kpts
ret['matched_xyzs'] = matched_xyzs
ret['matched_point3D_ids'] = matched_point3D_ids
ret['matched_sids'] = matched_sids
ret['reference_frame_id'] = last_frame.reference_frame_id
ret['matched_scene_name'] = last_frame.matched_scene_name
return ret
@torch.no_grad()
def match_frame(self, frame: Frame, reference_frame: Frame):
print('match: ', frame.keypoints.shape, reference_frame.keypoints.shape)
matches = self.matcher({
'descriptors0': torch.from_numpy(frame.descriptors)[None].cuda().float(),
'keypoints0': torch.from_numpy(frame.keypoints[:, :2])[None].cuda().float(),
'scores0': torch.from_numpy(frame.keypoints[:, 2])[None].cuda().float(),
'image_shape0': (1, 3, frame.image_size[0], frame.image_size[1]),
# 'descriptors0': torch.from_numpy(reference_frame.descriptors)[None].cuda().float(),
# 'keypoints0': torch.from_numpy(reference_frame.keypoints[:, :2])[None].cuda().float(),
# 'scores0': torch.from_numpy(reference_frame.keypoints[:, 2])[None].cuda().float(),
# 'image_shape0': (1, 3, reference_frame.image_size[0], reference_frame.image_size[1]),
'descriptors1': torch.from_numpy(reference_frame.descriptors)[None].cuda().float(),
'keypoints1': torch.from_numpy(reference_frame.keypoints[:, :2])[None].cuda().float(),
'scores1': torch.from_numpy(reference_frame.keypoints[:, 2])[None].cuda().float(),
'image_shape1': (1, 3, reference_frame.image_size[0], reference_frame.image_size[1]),
})['matches0'][0].cpu().numpy()
ids1 = np.arange(matches.shape[0])
ids2 = matches
ids1 = ids1[matches >= 0]
ids2 = ids2[matches >= 0]
mask_p3ds = reference_frame.points3d_mask[ids2]
ids1 = ids1[mask_p3ds]
ids2 = ids2[mask_p3ds]
return ids1, ids2
|