Spaces:
Running
Running
File size: 25,347 Bytes
63f3cf2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 |
# -*- coding: UTF-8 -*-
'''=================================================
@Project -> File pram -> map3d
@IDE PyCharm
@Author fx221@cam.ac.uk
@Date 04/03/2024 10:25
=================================================='''
import numpy as np
from collections import defaultdict
import os.path as osp
import pycolmap
import logging
import time
import torch
from localization.refframe import RefFrame
from localization.frame import Frame
from localization.point3d import Point3D
from colmap_utils.read_write_model import qvec2rotmat, read_model, read_compressed_model
from localization.utils import read_gt_pose
class SingleMap3D:
def __init__(self, config, matcher, with_compress=False, start_sid: int = 0):
self.config = config
self.matcher = matcher
self.image_path_prefix = self.config['image_path_prefix']
self.start_sid = start_sid # for a dataset with multiple scenes
if not with_compress:
cameras, images, p3ds = read_model(
path=osp.join(config['landmark_path'], 'model'), ext='.bin')
p3d_descs = np.load(osp.join(config['landmark_path'], 'point3D_desc.npy'),
allow_pickle=True)[()]
else:
cameras, images, p3ds = read_compressed_model(
path=osp.join(config['landmark_path'], 'compress_model_{:s}'.format(config['cluster_method'])),
ext='.bin')
p3d_descs = np.load(osp.join(config['landmark_path'], 'compress_model_{:s}/point3D_desc.npy'.format(
config['cluster_method'])), allow_pickle=True)[()]
print('Load {} cameras {} images {} 3D points'.format(len(cameras), len(images), len(p3d_descs)))
seg_data = np.load(
osp.join(config['landmark_path'], 'point3D_cluster_n{:d}_{:s}_{:s}.npy'.format(config['n_cluster'],
config['cluster_mode'],
config['cluster_method'])),
allow_pickle=True)[()]
p3d_id = seg_data['id']
seg_id = seg_data['label']
p3d_seg = {p3d_id[i]: seg_id[i] for i in range(p3d_id.shape[0])}
seg_p3d = {}
for k in p3d_seg.keys():
sid = p3d_seg[k]
if sid in seg_p3d.keys():
seg_p3d[sid].append(k)
else:
seg_p3d[sid] = [k]
print('Load {} segments and {} 3d points'.format(len(seg_p3d.keys()), len(p3d_seg.keys())))
seg_vrf = np.load(
osp.join(config['landmark_path'], 'point3D_vrf_n{:d}_{:s}_{:s}.npy'.format(config['n_cluster'],
config['cluster_mode'],
config['cluster_method'])),
allow_pickle=True)[()]
# construct 3D map
self.initialize_point3Ds(p3ds=p3ds, p3d_descs=p3d_descs, p3d_seg=p3d_seg)
self.initialize_ref_frames(cameras=cameras, images=images)
all_vrf_frame_ids = []
self.seg_ref_frame_ids = {}
for sid in seg_vrf.keys():
self.seg_ref_frame_ids[sid] = []
for vi in seg_vrf[sid].keys():
vrf_frame_id = seg_vrf[sid][vi]['image_id']
self.seg_ref_frame_ids[sid].append(vrf_frame_id)
if with_compress and vrf_frame_id in self.reference_frames.keys():
self.reference_frames[vrf_frame_id].point3D_ids = seg_vrf[sid][vi]['original_points3d']
all_vrf_frame_ids.extend(self.seg_ref_frame_ids[sid])
if with_compress:
all_ref_ids = list(self.reference_frames.keys())
for fid in all_ref_ids:
valid = self.reference_frames[fid].associate_keypoints_with_point3Ds(point3Ds=self.point3Ds)
if not valid:
del self.reference_frames[fid]
all_vrf_frame_ids = np.unique(all_vrf_frame_ids)
all_vrf_frame_ids = [v for v in all_vrf_frame_ids if v in self.reference_frames.keys()]
self.build_covisibility_graph(frame_ids=all_vrf_frame_ids, n_frame=config['localization'][
'covisibility_frame']) # build covisible frames for vrf frames only
logging.info(
f'Construct {len(self.reference_frames.keys())} ref frames and {len(self.point3Ds.keys())} 3d points')
self.gt_poses = {}
if config['gt_pose_path'] is not None:
gt_pose_path = osp.join(config['dataset_path'], config['gt_pose_path'])
self.read_gt_pose(path=gt_pose_path)
def read_gt_pose(self, path, prefix=''):
self.gt_poses = read_gt_pose(path=path)
print('Load {} gt poses'.format(len(self.gt_poses.keys())))
def initialize_point3Ds(self, p3ds, p3d_descs, p3d_seg):
self.point3Ds = {}
for id in p3ds.keys():
if id not in p3d_seg.keys():
continue
self.point3Ds[id] = Point3D(id=id, xyz=p3ds[id].xyz, error=p3ds[id].error,
refframe_id=-1, rgb=p3ds[id].rgb,
descriptor=p3d_descs[id], seg_id=p3d_seg[id],
frame_ids=p3ds[id].image_ids)
def initialize_ref_frames(self, cameras, images):
self.reference_frames = {}
for id in images.keys():
im = images[id]
cam = cameras[im.camera_id]
self.reference_frames[id] = RefFrame(camera=cam, id=id, qvec=im.qvec, tvec=im.tvec,
point3D_ids=im.point3D_ids,
keypoints=im.xys, name=im.name)
def localize_with_ref_frame(self, q_frame: Frame, q_kpt_ids: np.ndarray, sid, semantic_matching=False):
ref_frame_id = self.seg_ref_frame_ids[sid][0]
ref_frame = self.reference_frames[ref_frame_id]
if semantic_matching and sid > 0:
ref_data = ref_frame.get_keypoints_by_sid(sid=sid)
else:
ref_data = ref_frame.get_keypoints()
q_descs = q_frame.descriptors[q_kpt_ids]
q_kpts = q_frame.keypoints[q_kpt_ids, :2]
q_scores = q_frame.keypoints[q_kpt_ids, 2]
xyzs = ref_data['xyzs']
point3D_ids = ref_data['point3D_ids']
ref_sids = np.array([self.point3Ds[v].seg_id for v in point3D_ids])
with torch.no_grad():
indices0 = self.matcher({
'descriptors0': torch.from_numpy(q_descs)[None].cuda().float(),
'keypoints0': torch.from_numpy(q_kpts)[None].cuda().float(),
'scores0': torch.from_numpy(q_scores)[None].cuda().float(),
'image_shape0': (1, 3, q_frame.camera.width, q_frame.camera.height),
'descriptors1': torch.from_numpy(ref_data['descriptors'])[None].cuda().float(),
'keypoints1': torch.from_numpy(ref_data['keypoints'])[None].cuda().float(),
'scores1': torch.from_numpy(ref_data['scores'])[None].cuda().float(),
'image_shape1': (1, 3, ref_frame.camera.width, ref_frame.camera.height),
}
)['matches0'][0].cpu().numpy()
valid = indices0 >= 0
mkpts = q_kpts[valid]
mkpt_ids = q_kpt_ids[valid]
mxyzs = xyzs[indices0[valid]]
mpoint3D_ids = point3D_ids[indices0[valid]]
matched_sids = ref_sids[indices0[valid]]
matched_ref_keypoints = ref_data['keypoints'][indices0[valid]]
# print('mkpts: ', mkpts.shape, mxyzs.shape, np.sum(indices0 >= 0))
# cfg = q_frame.camera._asdict()
# q_cam = pycolmap.Camera(model=q_frame.camera.model, )
# config = {"estimation": {"ransac": {"max_error": ransac_thresh}}, **(config or {})}
ret = pycolmap.absolute_pose_estimation(mkpts + 0.5,
mxyzs,
q_frame.camera,
estimation_options={
"ransac": {"max_error": self.config['localization']['threshold']}},
refinement_options={},
# max_error_px=self.config['localization']['threshold']
)
if ret is None:
ret = {'success': False, }
else:
ret['success'] = True
ret['qvec'] = ret['cam_from_world'].rotation.quat[[3, 0, 1, 2]]
ret['tvec'] = ret['cam_from_world'].translation
ret['matched_keypoints'] = mkpts
ret['matched_keypoint_ids'] = mkpt_ids
ret['matched_xyzs'] = mxyzs
ret['reference_frame_id'] = ref_frame_id
ret['matched_point3D_ids'] = mpoint3D_ids
ret['matched_sids'] = matched_sids
ret['matched_ref_keypoints'] = matched_ref_keypoints
if not ret['success']:
ret['num_inliers'] = 0
ret['inliers'] = np.zeros(shape=(mkpts.shape[0],), dtype=bool)
return ret
def match(self, query_data, ref_data):
q_descs = query_data['descriptors']
q_kpts = query_data['keypoints']
q_scores = query_data['scores']
xyzs = ref_data['xyzs']
points3D_ids = ref_data['point3D_ids']
with torch.no_grad():
indices0 = self.matcher({
'descriptors0': torch.from_numpy(q_descs)[None].cuda().float(),
'keypoints0': torch.from_numpy(q_kpts)[None].cuda().float(),
'scores0': torch.from_numpy(q_scores)[None].cuda().float(),
'image_shape0': (1, 3, query_data['camera'].width, query_data['camera'].height),
'descriptors1': torch.from_numpy(ref_data['descriptors'])[None].cuda().float(),
'keypoints1': torch.from_numpy(ref_data['keypoints'])[None].cuda().float(),
'scores1': torch.from_numpy(ref_data['scores'])[None].cuda().float(),
'image_shape1': (1, 3, ref_data['camera'].width, ref_data['camera'].height),
}
)['matches0'][0].cpu().numpy()
valid = indices0 >= 0
mkpts = q_kpts[valid]
mkpt_ids = np.where(valid)[0]
mxyzs = xyzs[indices0[valid]]
mpoints3D_ids = points3D_ids[indices0[valid]]
return {
'matched_keypoints': mkpts,
'matched_xyzs': mxyzs,
'matched_point3D_ids': mpoints3D_ids,
'matched_keypoint_ids': mkpt_ids,
}
def build_covisibility_graph(self, frame_ids: list = None, n_frame: int = 20):
def find_covisible_frames(frame_id):
observed = self.reference_frames[frame_id].point3D_ids
covis = defaultdict(int)
for pid in observed:
if pid == -1:
continue
if pid not in self.point3Ds.keys():
continue
for img_id in self.point3Ds[pid].frame_ids:
covis[img_id] += 1
covis_ids = np.array(list(covis.keys()))
covis_num = np.array([covis[i] for i in covis_ids])
if len(covis_ids) <= n_frame:
sel_covis_ids = covis_ids[np.argsort(-covis_num)]
else:
ind_top = np.argpartition(covis_num, -n_frame)
ind_top = ind_top[-n_frame:] # unsorted top k
ind_top = ind_top[np.argsort(-covis_num[ind_top])]
sel_covis_ids = [covis_ids[i] for i in ind_top]
return sel_covis_ids
if frame_ids is None:
frame_ids = list(self.referece_frames.keys())
self.covisible_graph = defaultdict()
for frame_id in frame_ids:
self.covisible_graph[frame_id] = find_covisible_frames(frame_id=frame_id)
def refine_pose(self, q_frame: Frame, refinement_method='matching'):
if refinement_method == 'matching':
return self.refine_pose_by_matching(q_frame=q_frame)
elif refinement_method == 'projection':
return self.refine_pose_by_projection(q_frame=q_frame)
else:
raise NotImplementedError
def refine_pose_by_matching(self, q_frame):
ref_frame_id = q_frame.reference_frame_id
db_ids = self.covisible_graph[ref_frame_id]
print('Find {} covisible frames'.format(len(db_ids)))
loc_success = q_frame.tracking_status
if loc_success and ref_frame_id in db_ids:
init_kpts = q_frame.matched_keypoints
init_kpt_ids = q_frame.matched_keypoint_ids
init_point3D_ids = q_frame.matched_point3D_ids
init_xyzs = np.array([self.point3Ds[v].xyz for v in init_point3D_ids]).reshape(-1, 3)
list(db_ids).remove(ref_frame_id)
else:
init_kpts = None
init_xyzs = None
init_point3D_ids = None
matched_xyzs = []
matched_kpts = []
matched_point3D_ids = []
matched_kpt_ids = []
for idx, frame_id in enumerate(db_ids):
ref_data = self.reference_frames[frame_id].get_keypoints()
match_out = self.match(query_data={
'keypoints': q_frame.keypoints[:, :2],
'scores': q_frame.keypoints[:, 2],
'descriptors': q_frame.descriptors,
'camera': q_frame.camera, },
ref_data=ref_data)
if match_out['matched_keypoints'].shape[0] > 0:
matched_kpts.append(match_out['matched_keypoints'])
matched_xyzs.append(match_out['matched_xyzs'])
matched_point3D_ids.append(match_out['matched_point3D_ids'])
matched_kpt_ids.append(match_out['matched_keypoint_ids'])
if len(matched_kpts) > 1:
matched_kpts = np.vstack(matched_kpts)
matched_xyzs = np.vstack(matched_xyzs).reshape(-1, 3)
matched_point3D_ids = np.hstack(matched_point3D_ids)
matched_kpt_ids = np.hstack(matched_kpt_ids)
else:
matched_kpts = matched_kpts[0]
matched_xyzs = matched_xyzs[0]
matched_point3D_ids = matched_point3D_ids[0]
matched_kpt_ids = matched_kpt_ids[0]
if init_kpts is not None and init_kpts.shape[0] > 0:
matched_kpts = np.vstack([matched_kpts, init_kpts])
matched_xyzs = np.vstack([matched_xyzs, init_xyzs])
matched_point3D_ids = np.hstack([matched_point3D_ids, init_point3D_ids])
matched_kpt_ids = np.hstack([matched_kpt_ids, init_kpt_ids])
matched_sids = np.array([self.point3Ds[v].seg_id for v in matched_point3D_ids])
print_text = 'Refinement by matching. Get {:d} covisible frames with {:d} matches for optimization'.format(
len(db_ids), matched_xyzs.shape[0])
print(print_text)
t_start = time.time()
ret = pycolmap.absolute_pose_estimation(matched_kpts + 0.5,
matched_xyzs,
q_frame.camera,
estimation_options={
'ransac': {
'max_error': self.config['localization']['threshold'],
'min_num_trials': 1000,
'max_num_trials': 10000,
'confidence': 0.995,
}},
refinement_options={},
# max_error_px=self.config['localization']['threshold'],
# min_num_trials=1000, max_num_trials=10000, confidence=0.995)
)
print('Time of RANSAC: {:.2f}s'.format(time.time() - t_start))
if ret is None:
ret = {'success': False, }
else:
ret['success'] = True
ret['qvec'] = ret['cam_from_world'].rotation.quat[[3, 0, 1, 2]]
ret['tvec'] = ret['cam_from_world'].translation
ret['matched_keypoints'] = matched_kpts
ret['matched_keypoint_ids'] = matched_kpt_ids
ret['matched_xyzs'] = matched_xyzs
ret['matched_point3D_ids'] = matched_point3D_ids
ret['matched_sids'] = matched_sids
if ret['success']:
inlier_mask = np.array(ret['inliers'])
best_reference_frame_ids = self.find_reference_frames(matched_point3D_ids=matched_point3D_ids[inlier_mask],
candidate_frame_ids=self.covisible_graph.keys())
else:
best_reference_frame_ids = self.find_reference_frames(matched_point3D_ids=matched_point3D_ids,
candidate_frame_ids=self.covisible_graph.keys())
ret['refinement_reference_frame_ids'] = best_reference_frame_ids[:self.config['localization'][
'covisibility_frame']]
ret['reference_frame_id'] = best_reference_frame_ids[0]
return ret
@torch.no_grad()
def refine_pose_by_projection(self, q_frame):
q_Rcw = qvec2rotmat(q_frame.qvec)
q_tcw = q_frame.tvec
q_Tcw = np.eye(4, dtype=float) # [4 4]
q_Tcw[:3, :3] = q_Rcw
q_Tcw[:3, 3] = q_tcw
cam = q_frame.camera
imw = cam.width
imh = cam.height
K = q_frame.get_intrinsics() # [3, 3]
reference_frame_id = q_frame.reference_frame_id
covis_frame_ids = self.covisible_graph[reference_frame_id]
if reference_frame_id not in covis_frame_ids:
covis_frame_ids.append(reference_frame_id)
all_point3D_ids = []
for frame_id in covis_frame_ids:
all_point3D_ids.extend(list(self.reference_frames[frame_id].point3D_ids))
all_point3D_ids = np.unique(all_point3D_ids)
all_xyzs = []
all_descs = []
all_sids = []
for pid in all_point3D_ids:
all_xyzs.append(self.point3Ds[pid].xyz)
all_descs.append(self.point3Ds[pid].descriptor)
all_sids.append(self.point3Ds[pid].seg_id)
all_xyzs = np.array(all_xyzs) # [N 3]
all_descs = np.array(all_descs) # [N 3]
all_point3D_ids = np.array(all_point3D_ids)
all_sids = np.array(all_sids)
# move to gpu (distortion is not included)
# proj_uv = pycolmap.camera.img_from_cam(
# np.array([1, 1, 1]).reshape(1, 3),
# )
all_xyzs_cuda = torch.from_numpy(all_xyzs).cuda()
ones = torch.ones(size=(all_xyzs_cuda.shape[0], 1), dtype=all_xyzs_cuda.dtype).cuda()
all_xyzs_cuda_homo = torch.cat([all_xyzs_cuda, ones], dim=1) # [N 4]
K_cuda = torch.from_numpy(K).cuda()
proj_uvs = K_cuda @ (torch.from_numpy(q_Tcw).cuda() @ all_xyzs_cuda_homo.t())[:3, :] # [3, N]
proj_uvs[0] /= proj_uvs[2]
proj_uvs[1] /= proj_uvs[2]
mask = (proj_uvs[2] > 0) * (proj_uvs[2] < 100) * (proj_uvs[0] >= 0) * (proj_uvs[0] < imw) * (
proj_uvs[1] >= 0) * (proj_uvs[1] < imh)
proj_uvs = proj_uvs[:, mask]
print('Projection: out of range {:d}/{:d}'.format(all_xyzs_cuda.shape[0], proj_uvs.shape[1]))
mxyzs = all_xyzs[mask.cpu().numpy()]
mpoint3D_ids = all_point3D_ids[mask.cpu().numpy()]
msids = all_sids[mask.cpu().numpy()]
q_kpts_cuda = torch.from_numpy(q_frame.keypoints[:, :2]).cuda()
proj_error = q_kpts_cuda[..., None] - proj_uvs[:2][None]
proj_error = torch.sqrt(torch.sum(proj_error ** 2, dim=1)) # [M N]
out_of_range_mask = (proj_error >= 2 * self.config['localization']['threshold'])
q_descs_cuda = torch.from_numpy(q_frame.descriptors).cuda().float() # [M D]
all_descs_cuda = torch.from_numpy(all_descs).cuda().float()[mask] # [N D]
desc_dist = torch.sqrt(2 - 2 * q_descs_cuda @ all_descs_cuda.t() + 1e-6)
desc_dist[out_of_range_mask] = desc_dist[out_of_range_mask] + 100
dists, ids = torch.topk(desc_dist, k=2, largest=False, dim=1)
# apply nn ratio
ratios = dists[:, 0] / dists[:, 1] # smaller, better
ratio_mask = (ratios <= 0.995) * (dists[:, 0] < 100)
ratio_mask = ratio_mask.cpu().numpy()
ids = ids.cpu().numpy()[ratio_mask, 0]
ratio_num = torch.sum(ratios <= 0.995)
proj_num = torch.sum(dists[:, 0] < 100)
print('Projection: after ratio {:d}/{:d}, ratio {:d}, proj {:d}'.format(q_kpts_cuda.shape[0],
np.sum(ratio_mask),
ratio_num, proj_num))
mkpts = q_frame.keypoints[ratio_mask]
mkpt_ids = np.where(ratio_mask)[0]
mxyzs = mxyzs[ids]
mpoint3D_ids = mpoint3D_ids[ids]
msids = msids[ids]
print('projection: ', mkpts.shape, mkpt_ids.shape, mxyzs.shape, mpoint3D_ids.shape, msids.shape)
t_start = time.time()
ret = pycolmap.absolute_pose_estimation(mkpts[:, :2] + 0.5, mxyzs, q_frame.camera,
estimation_options={
"ransac": {"max_error": self.config['localization']['threshold']}},
refinement_options={},
# max_error_px=self.config['localization']['threshold']
)
if ret is None:
ret = {'success': False, }
else:
ret['success'] = True
ret['qvec'] = ret['cam_from_world'].rotation.quat[[3, 0, 1, 2]]
ret['tvec'] = ret['cam_from_world'].translation
# inlier_mask = np.ones(shape=(mkpts.shape[0],), dtype=bool).tolist()
# ret = pycolmap.pose_refinement(q_frame.tvec, q_frame.qvec, mkpts[:, :2] + 0.5, mxyzs, inlier_mask, cfg)
# ret['num_inliers'] = np.sum(inlier_mask).astype(int)
# ret['inliers'] = np.array(inlier_mask)
print_text = 'Refinement by projection. Get {:d} inliers of {:d} matches for optimization'.format(
ret['num_inliers'], mxyzs.shape[0])
print(print_text)
print('Time of RANSAC: {:.2f}s'.format(time.time() - t_start))
ret['matched_keypoints'] = mkpts
ret['matched_xyzs'] = mxyzs
ret['matched_point3D_ids'] = mpoint3D_ids
ret['matched_sids'] = msids
ret['matched_keypoint_ids'] = mkpt_ids
if ret['success']:
inlier_mask = np.array(ret['inliers'])
best_reference_frame_ids = self.find_reference_frames(matched_point3D_ids=mpoint3D_ids[inlier_mask],
candidate_frame_ids=self.covisible_graph.keys())
else:
best_reference_frame_ids = self.find_reference_frames(matched_point3D_ids=mpoint3D_ids,
candidate_frame_ids=self.covisible_graph.keys())
ret['refinement_reference_frame_ids'] = best_reference_frame_ids[:self.config['localization'][
'covisibility_frame']]
ret['reference_frame_id'] = best_reference_frame_ids[0]
if not ret['success']:
ret['num_inliers'] = 0
ret['inliers'] = np.zeros(shape=(mkpts.shape[0],), dtype=bool)
return ret
def find_reference_frames(self, matched_point3D_ids, candidate_frame_ids=None):
covis_frames = defaultdict(int)
for pid in matched_point3D_ids:
for im_id in self.point3Ds[pid].frame_ids:
if candidate_frame_ids is not None and im_id in candidate_frame_ids:
covis_frames[im_id] += 1
covis_ids = np.array(list(covis_frames.keys()))
covis_num = np.array([covis_frames[i] for i in covis_ids])
sorted_idxes = np.argsort(covis_num)[::-1] # larger to small
sorted_frame_ids = covis_ids[sorted_idxes]
return sorted_frame_ids
def check_semantic_consistency(self, q_frame: Frame, sid, overlap_ratio=0.5):
ref_frame_id = self.seg_ref_frame_ids[sid][0]
ref_frame = self.reference_frames[ref_frame_id]
q_sids = q_frame.seg_ids
ref_sids = np.array([self.point3Ds[v].seg_id for v in ref_frame.point3D_ids]) + self.start_sid
overlap_sids = np.intersect1d(q_sids, ref_sids)
overlap_num1 = 0
overlap_num2 = 0
for sid in overlap_sids:
overlap_num1 += np.sum(q_sids == sid)
overlap_num2 += np.sum(ref_sids == sid)
ratio1 = overlap_num1 / q_sids.shape[0]
ratio2 = overlap_num2 / ref_sids.shape[0]
# print('semantic_check: ', overlap_sids, overlap_num1, ratio1, overlap_num2, ratio2)
return min(ratio1, ratio2) >= overlap_ratio
|