Spaces:
Running
Running
File size: 19,322 Bytes
63f3cf2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
# -*- coding: UTF-8 -*-
'''=================================================
@Project -> File pram -> multimap3d
@IDE PyCharm
@Author fx221@cam.ac.uk
@Date 04/03/2024 13:47
=================================================='''
import numpy as np
import os
import os.path as osp
import time
import cv2
import torch
import yaml
from copy import deepcopy
from recognition.vis_seg import vis_seg_point, generate_color_dic, vis_inlier, plot_matches
from localization.base_model import dynamic_load
import localization.matchers as matchers
from localization.match_features_batch import confs as matcher_confs
from nets.gm import GM
from tools.common import resize_img
from localization.singlemap3d import SingleMap3D
from localization.frame import Frame
class MultiMap3D:
def __init__(self, config, viewer=None, save_dir=None):
self.config = config
self.save_dir = save_dir
self.scenes = []
self.sid_scene_name = []
self.sub_maps = {}
self.scene_name_start_sid = {}
self.loc_config = config['localization']
self.save_dir = save_dir
if self.save_dir is not None:
os.makedirs(self.save_dir, exist_ok=True)
self.matching_method = config['localization']['matching_method']
device = 'cuda' if torch.cuda.is_available() else 'cpu'
Model = dynamic_load(matchers, self.matching_method)
self.matcher = Model(matcher_confs[self.matching_method]['model']).eval().to(device)
self.initialize_map(config=config)
self.loc_config = config['localization']
self.viewer = viewer
# options
self.do_refinement = self.loc_config['do_refinement']
self.refinement_method = self.loc_config['refinement_method']
self.semantic_matching = self.loc_config['semantic_matching']
self.do_pre_filtering = self.loc_config['pre_filtering_th'] > 0
self.pre_filtering_th = self.loc_config['pre_filtering_th']
def initialize_map(self, config):
n_class = 0
datasets = config['dataset']
for name in datasets:
config_path = osp.join(config['config_path'], '{:s}.yaml'.format(name))
dataset_name = name
with open(config_path, 'r') as f:
scene_config = yaml.load(f, Loader=yaml.Loader)
scenes = scene_config['scenes']
for sid, scene in enumerate(scenes):
self.scenes.append(name + '/' + scene)
new_config = deepcopy(config)
new_config['dataset_path'] = osp.join(config['dataset_path'], dataset_name, scene)
new_config['landmark_path'] = osp.join(config['landmark_path'], dataset_name, scene)
new_config['n_cluster'] = scene_config[scene]['n_cluster']
new_config['cluster_mode'] = scene_config[scene]['cluster_mode']
new_config['cluster_method'] = scene_config[scene]['cluster_method']
new_config['gt_pose_path'] = scene_config[scene]['gt_pose_path']
new_config['image_path_prefix'] = scene_config[scene]['image_path_prefix']
sub_map = SingleMap3D(config=new_config,
matcher=self.matcher,
with_compress=config['localization']['with_compress'],
start_sid=n_class)
self.sub_maps[dataset_name + '/' + scene] = sub_map
n_scene_class = scene_config[scene]['n_cluster']
self.sid_scene_name = self.sid_scene_name + [dataset_name + '/' + scene for ni in range(n_scene_class)]
self.scene_name_start_sid[dataset_name + '/' + scene] = n_class
n_class = n_class + n_scene_class
# break
print('Load {} sub_maps from {} datasets'.format(len(self.sub_maps), len(datasets)))
def run(self, q_frame: Frame):
show = self.loc_config['show']
seg_color = generate_color_dic(n_seg=2000)
if show:
cv2.namedWindow('loc', cv2.WINDOW_NORMAL)
q_loc_segs = self.process_segmentations(segs=torch.from_numpy(q_frame.segmentations),
topk=self.loc_config['seg_k'])
q_pred_segs_top1 = q_frame.seg_ids # initial results
q_scene_name = q_frame.scene_name
q_name = q_frame.name
q_full_name = osp.join(q_scene_name, q_name)
q_loc_sids = {}
for v in q_loc_segs:
q_loc_sids[v[0]] = (v[1], v[2])
query_sids = list(q_loc_sids.keys())
for i, sid in enumerate(query_sids):
t_start = time.time()
q_kpt_ids = q_loc_sids[sid][0]
print(q_scene_name, q_name, sid)
sid = sid - 1 # start from 0, confused!
pred_scene_name = self.sid_scene_name[sid]
start_seg_id = self.scene_name_start_sid[pred_scene_name]
pred_sid_in_sub_scene = sid - self.scene_name_start_sid[pred_scene_name]
pred_sub_map = self.sub_maps[pred_scene_name]
pred_image_path_prefix = pred_sub_map.image_path_prefix
print('pred/gt scene: {:s}, {:s}, sid: {:d}'.format(pred_scene_name, q_scene_name, pred_sid_in_sub_scene))
print('{:s}/{:s}, pred: {:s}, sid: {:d}, order: {:d}'.format(q_scene_name, q_name, pred_scene_name, sid,
i))
if (q_kpt_ids.shape[0] >= self.loc_config['min_kpts']
and self.semantic_matching
and pred_sub_map.check_semantic_consistency(q_frame=q_frame,
sid=pred_sid_in_sub_scene,
overlap_ratio=0.5)):
semantic_matching = True
else:
q_kpt_ids = np.arange(q_frame.keypoints.shape[0])
semantic_matching = False
print_text = f'Semantic matching - {semantic_matching}! Query kpts {q_kpt_ids.shape[0]} for {i}th seg {sid}'
print(print_text)
ret = pred_sub_map.localize_with_ref_frame(q_frame=q_frame,
q_kpt_ids=q_kpt_ids,
sid=pred_sid_in_sub_scene,
semantic_matching=semantic_matching)
q_frame.time_loc = q_frame.time_loc + time.time() - t_start # accumulate tracking time
if show:
reference_frame = pred_sub_map.reference_frames[ret['reference_frame_id']]
ref_img = cv2.imread(osp.join(self.config['dataset_path'], pred_scene_name, pred_image_path_prefix,
reference_frame.name))
q_img_seg = vis_seg_point(img=q_frame.image, kpts=q_frame.keypoints[q_kpt_ids, :2],
segs=q_frame.seg_ids[q_kpt_ids] + 1,
seg_color=seg_color)
matched_points3D_ids = ret['matched_point3D_ids']
ref_sids = np.array([pred_sub_map.point3Ds[v].seg_id for v in matched_points3D_ids]) + \
self.scene_name_start_sid[pred_scene_name] + 1 # start from 1 as bg is 0
ref_img_seg = vis_seg_point(img=ref_img, kpts=ret['matched_ref_keypoints'], segs=ref_sids,
seg_color=seg_color)
q_matched_kpts = ret['matched_keypoints']
ref_matched_kpts = ret['matched_ref_keypoints']
img_loc_matching = plot_matches(img1=q_img_seg, img2=ref_img_seg,
pts1=q_matched_kpts, pts2=ref_matched_kpts,
inliers=np.array([True for i in range(q_matched_kpts.shape[0])]),
radius=9, line_thickness=3
)
q_frame.image_matching_tmp = img_loc_matching
q_frame.reference_frame_name_tmp = osp.join(self.config['dataset_path'],
pred_scene_name,
pred_image_path_prefix,
reference_frame.name)
# ret['image_matching'] = img_loc_matching
# ret['reference_frame_name'] = osp.join(self.config['dataset_path'],
# pred_scene_name,
# pred_image_path_prefix,
# reference_frame.name)
q_ref_img_matching = np.hstack([resize_img(q_img_seg, nh=512),
resize_img(ref_img_seg, nh=512),
resize_img(img_loc_matching, nh=512)])
ret['order'] = i
ret['matched_scene_name'] = pred_scene_name
if not ret['success']:
num_matches = ret['matched_keypoints'].shape[0]
num_inliers = ret['num_inliers']
print_text = f'Localization failed with {num_matches}/{q_kpt_ids.shape[0]} matches and {num_inliers} inliers, order {i}'
print(print_text)
if show:
show_text = 'FAIL! order: {:d}/{:d}-{:d}/{:d}'.format(i, len(q_loc_segs),
num_matches,
q_kpt_ids.shape[0])
q_img_inlier = vis_inlier(img=q_img_seg, kpts=ret['matched_keypoints'], inliers=ret['inliers'],
radius=9 + 2, thickness=2)
q_img_inlier = cv2.putText(img=q_img_inlier, text=show_text, org=(30, 30),
fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0, 0, 255),
thickness=2, lineType=cv2.LINE_AA)
q_frame.image_inlier_tmp = q_img_inlier
q_img_loc = np.hstack([resize_img(q_ref_img_matching, nh=512), resize_img(q_img_inlier, nh=512)])
cv2.imshow('loc', q_img_loc)
key = cv2.waitKey(self.loc_config['show_time'])
if key == ord('q'):
cv2.destroyAllWindows()
exit(0)
continue
if show:
q_err, t_err = q_frame.compute_pose_error()
num_matches = ret['matched_keypoints'].shape[0]
num_inliers = ret['num_inliers']
show_text = 'order: {:d}/{:d}, k/m/i: {:d}/{:d}/{:d}'.format(
i, len(q_loc_segs), q_kpt_ids.shape[0], num_matches, num_inliers)
q_img_inlier = vis_inlier(img=q_img_seg, kpts=ret['matched_keypoints'], inliers=ret['inliers'],
radius=9 + 2, thickness=2)
q_img_inlier = cv2.putText(img=q_img_inlier, text=show_text, org=(30, 30),
fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0, 0, 255),
thickness=2, lineType=cv2.LINE_AA)
show_text = 'r_err:{:.2f}, t_err:{:.2f}'.format(q_err, t_err)
q_img_inlier = cv2.putText(img=q_img_inlier, text=show_text, org=(30, 80),
fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0, 0, 255),
thickness=2, lineType=cv2.LINE_AA)
q_frame.image_inlier_tmp = q_img_inlier
q_img_loc = np.hstack([resize_img(q_ref_img_matching, nh=512), resize_img(q_img_inlier, nh=512)])
cv2.imshow('loc', q_img_loc)
key = cv2.waitKey(self.loc_config['show_time'])
if key == ord('q'):
cv2.destroyAllWindows()
exit(0)
success = self.verify_and_update(q_frame=q_frame, ret=ret)
if not success:
continue
else:
break
if q_frame.tracking_status is None:
print('Failed to find a proper reference frame.')
return False
# do refinement
if not self.do_refinement:
return True
else:
t_start = time.time()
pred_sub_map = self.sub_maps[q_frame.matched_scene_name]
if q_frame.tracking_status is True and np.sum(q_frame.matched_inliers) >= 64:
ret = pred_sub_map.refine_pose(q_frame=q_frame, refinement_method=self.loc_config['refinement_method'])
else:
ret = pred_sub_map.refine_pose(q_frame=q_frame,
refinement_method='matching') # do not trust the pose for projection
q_frame.time_ref = time.time() - t_start
inlier_mask = np.array(ret['inliers'])
q_frame.qvec = ret['qvec']
q_frame.tvec = ret['tvec']
q_frame.matched_keypoints = ret['matched_keypoints'][inlier_mask]
q_frame.matched_keypoint_ids = ret['matched_keypoint_ids'][inlier_mask]
q_frame.matched_xyzs = ret['matched_xyzs'][inlier_mask]
q_frame.matched_point3D_ids = ret['matched_point3D_ids'][inlier_mask]
q_frame.matched_sids = ret['matched_sids'][inlier_mask]
q_frame.matched_inliers = np.array(ret['inliers'])[inlier_mask]
q_frame.refinement_reference_frame_ids = ret['refinement_reference_frame_ids']
q_frame.reference_frame_id = ret['reference_frame_id']
q_err, t_err = q_frame.compute_pose_error()
ref_full_name = q_frame.matched_scene_name + '/' + pred_sub_map.reference_frames[
q_frame.reference_frame_id].name
print_text = 'Localization of {:s} success with inliers {:d}/{:d} with ref_name: {:s}, order: {:d}, q_err: {:.2f}, t_err: {:.2f}'.format(
q_full_name, ret['num_inliers'], len(ret['inliers']), ref_full_name, q_frame.matched_order, q_err,
t_err)
print(print_text)
if show:
q_err, t_err = q_frame.compute_pose_error()
num_matches = ret['matched_keypoints'].shape[0]
num_inliers = ret['num_inliers']
show_text = 'Ref:{:d}/{:d},r_err:{:.2f}/t_err:{:.2f}'.format(num_matches, num_inliers, q_err,
t_err)
q_img_inlier = cv2.putText(img=q_img_inlier, text=show_text, org=(30, 130),
fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0, 0, 255),
thickness=2, lineType=cv2.LINE_AA)
q_frame.image_inlier = q_img_inlier
return True
def verify_and_update(self, q_frame: Frame, ret: dict):
num_matches = ret['matched_keypoints'].shape[0]
num_inliers = ret['num_inliers']
if q_frame.matched_keypoints is None or np.sum(q_frame.matched_inliers) < num_inliers:
self.update_query_frame(q_frame=q_frame, ret=ret)
q_err, t_err = q_frame.compute_pose_error(pred_qvec=ret['qvec'], pred_tvec=ret['tvec'])
if num_inliers < self.loc_config['min_inliers']:
print_text = 'Failed due to insufficient {:d} inliers, order {:d}, q_err: {:.2f}, t_err: {:.2f}'.format(
ret['num_inliers'], ret['order'], q_err, t_err)
print(print_text)
q_frame.tracking_status = False
return False
else:
print_text = 'Succeed! Find {}/{} 2D-3D inliers, order {:d}, q_err: {:.2f}, t_err: {:.2f}'.format(
num_inliers, num_matches, ret['order'], q_err, t_err)
print(print_text)
q_frame.tracking_status = True
return True
def update_query_frame(self, q_frame, ret):
q_frame.matched_scene_name = ret['matched_scene_name']
q_frame.reference_frame_id = ret['reference_frame_id']
q_frame.qvec = ret['qvec']
q_frame.tvec = ret['tvec']
inlier_mask = np.array(ret['inliers'])
q_frame.matched_keypoints = ret['matched_keypoints']
q_frame.matched_keypoint_ids = ret['matched_keypoint_ids']
q_frame.matched_xyzs = ret['matched_xyzs']
q_frame.matched_point3D_ids = ret['matched_point3D_ids']
q_frame.matched_sids = ret['matched_sids']
q_frame.matched_inliers = np.array(ret['inliers'])
q_frame.matched_order = ret['order']
if q_frame.image_inlier_tmp is not None:
q_frame.image_inlier = deepcopy(q_frame.image_inlier_tmp)
if q_frame.image_matching_tmp is not None:
q_frame.image_matching = deepcopy(q_frame.image_matching_tmp)
if q_frame.reference_frame_name_tmp is not None:
q_frame.reference_frame_name = q_frame.reference_frame_name_tmp
# inlier_mask = np.array(ret['inliers'])
# q_frame.matched_keypoints = ret['matched_keypoints'][inlier_mask]
# q_frame.matched_keypoint_ids = ret['matched_keypoint_ids'][inlier_mask]
# q_frame.matched_xyzs = ret['matched_xyzs'][inlier_mask]
# q_frame.matched_point3D_ids = ret['matched_point3D_ids'][inlier_mask]
# q_frame.matched_sids = ret['matched_sids'][inlier_mask]
# q_frame.matched_inliers = np.array(ret['inliers'])[inlier_mask]
# print('update_query_frame: ', q_frame.matched_keypoint_ids.shape, q_frame.matched_keypoints.shape,
# q_frame.matched_xyzs.shape, q_frame.matched_xyzs.shape, np.sum(q_frame.matched_inliers))
def process_segmentations(self, segs, topk=10):
pred_values, pred_ids = torch.topk(segs, k=segs.shape[-1], largest=True, dim=-1) # [N, C]
pred_values = pred_values.numpy()
pred_ids = pred_ids.numpy()
out = []
used_sids = []
for k in range(segs.shape[-1]):
values_k = pred_values[:, k]
ids_k = pred_ids[:, k]
uids = np.unique(ids_k)
out_k = []
for sid in uids:
if sid == 0:
continue
if sid in used_sids:
continue
used_sids.append(sid)
ids = np.where(ids_k == sid)[0]
score = np.mean(values_k[ids])
# score = np.median(values_k[ids])
# score = 100 - k
# out_k.append((ids.shape[0], sid - 1, ids, score))
out_k.append((ids.shape[0], sid, ids, score))
out_k = sorted(out_k, key=lambda item: item[0], reverse=True)
for v in out_k:
out.append((v[1], v[2], v[3])) # [sid, ids, score]
if len(out) >= topk:
return out
return out
|