File size: 10,604 Bytes
e8fe67e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Interactive demo of Cross-view Completion."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Copyright (C) 2022-present Naver Corporation. All rights reserved.\n",
    "# Licensed under CC BY-NC-SA 4.0 (non-commercial use only)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "import numpy as np\n",
    "from models.croco import CroCoNet\n",
    "from ipywidgets import interact, interactive, fixed, interact_manual\n",
    "import ipywidgets as widgets\n",
    "import matplotlib.pyplot as plt\n",
    "import quaternion\n",
    "import models.masking"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Load CroCo model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "ckpt = torch.load('pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth', 'cpu')\n",
    "model = CroCoNet( **ckpt.get('croco_kwargs',{}))\n",
    "msg = model.load_state_dict(ckpt['model'], strict=True)\n",
    "use_gpu = torch.cuda.is_available() and torch.cuda.device_count()>0\n",
    "device = torch.device('cuda:0' if use_gpu else 'cpu')\n",
    "model = model.eval()\n",
    "model = model.to(device=device)\n",
    "print(msg)\n",
    "\n",
    "def process_images(ref_image, target_image, masking_ratio, reconstruct_unmasked_patches=False):\n",
    "    \"\"\"\n",
    "    Perform Cross-View completion using two input images, specified using Numpy arrays.\n",
    "    \"\"\"\n",
    "    # Replace the mask generator\n",
    "    model.mask_generator = models.masking.RandomMask(model.patch_embed.num_patches, masking_ratio)\n",
    "\n",
    "    # ImageNet-1k color normalization\n",
    "    imagenet_mean = torch.as_tensor([0.485, 0.456, 0.406]).reshape(1,3,1,1).to(device)\n",
    "    imagenet_std = torch.as_tensor([0.229, 0.224, 0.225]).reshape(1,3,1,1).to(device)\n",
    "\n",
    "    normalize_input_colors = True\n",
    "    is_output_normalized = True\n",
    "    with torch.no_grad():\n",
    "        # Cast data to torch\n",
    "        target_image = (torch.as_tensor(target_image, dtype=torch.float, device=device).permute(2,0,1) / 255)[None]\n",
    "        ref_image = (torch.as_tensor(ref_image, dtype=torch.float, device=device).permute(2,0,1) / 255)[None]\n",
    "\n",
    "        if normalize_input_colors:\n",
    "            ref_image = (ref_image - imagenet_mean) / imagenet_std\n",
    "            target_image = (target_image - imagenet_mean) / imagenet_std\n",
    "\n",
    "        out, mask, _ = model(target_image, ref_image)\n",
    "        # # get target\n",
    "        if not is_output_normalized:\n",
    "            predicted_image = model.unpatchify(out)\n",
    "        else:\n",
    "            # The output only contains higher order information,\n",
    "            # we retrieve mean and standard deviation from the actual target image\n",
    "            patchified = model.patchify(target_image)\n",
    "            mean = patchified.mean(dim=-1, keepdim=True)\n",
    "            var = patchified.var(dim=-1, keepdim=True)\n",
    "            pred_renorm = out * (var + 1.e-6)**.5 + mean\n",
    "            predicted_image = model.unpatchify(pred_renorm)\n",
    "\n",
    "        image_masks = model.unpatchify(model.patchify(torch.ones_like(ref_image)) * mask[:,:,None])\n",
    "        masked_target_image = (1 - image_masks) * target_image\n",
    "      \n",
    "        if not reconstruct_unmasked_patches:\n",
    "            # Replace unmasked patches by their actual values\n",
    "            predicted_image = predicted_image * image_masks + masked_target_image\n",
    "\n",
    "        # Unapply color normalization\n",
    "        if normalize_input_colors:\n",
    "            predicted_image = predicted_image * imagenet_std + imagenet_mean\n",
    "            masked_target_image = masked_target_image * imagenet_std + imagenet_mean\n",
    "        \n",
    "        # Cast to Numpy\n",
    "        masked_target_image = np.asarray(torch.clamp(masked_target_image.squeeze(0).permute(1,2,0) * 255, 0, 255).cpu().numpy(), dtype=np.uint8)\n",
    "        predicted_image = np.asarray(torch.clamp(predicted_image.squeeze(0).permute(1,2,0) * 255, 0, 255).cpu().numpy(), dtype=np.uint8)\n",
    "        return masked_target_image, predicted_image"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Use the Habitat simulator to render images from arbitrary viewpoints (requires habitat_sim to be installed)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "os.environ[\"MAGNUM_LOG\"]=\"quiet\"\n",
    "os.environ[\"HABITAT_SIM_LOG\"]=\"quiet\"\n",
    "import habitat_sim\n",
    "\n",
    "scene = \"habitat-sim-data/scene_datasets/habitat-test-scenes/skokloster-castle.glb\"\n",
    "navmesh = \"habitat-sim-data/scene_datasets/habitat-test-scenes/skokloster-castle.navmesh\"\n",
    "\n",
    "sim_cfg = habitat_sim.SimulatorConfiguration()\n",
    "if use_gpu: sim_cfg.gpu_device_id = 0\n",
    "sim_cfg.scene_id = scene\n",
    "sim_cfg.load_semantic_mesh = False\n",
    "rgb_sensor_spec = habitat_sim.CameraSensorSpec()\n",
    "rgb_sensor_spec.uuid = \"color\"\n",
    "rgb_sensor_spec.sensor_type = habitat_sim.SensorType.COLOR\n",
    "rgb_sensor_spec.resolution = (224,224)\n",
    "rgb_sensor_spec.hfov = 56.56\n",
    "rgb_sensor_spec.position = [0.0, 0.0, 0.0]\n",
    "rgb_sensor_spec.orientation = [0, 0, 0]\n",
    "agent_cfg = habitat_sim.agent.AgentConfiguration(sensor_specifications=[rgb_sensor_spec])\n",
    "\n",
    "\n",
    "cfg = habitat_sim.Configuration(sim_cfg, [agent_cfg])\n",
    "sim = habitat_sim.Simulator(cfg)\n",
    "if navmesh is not None:\n",
    "    sim.pathfinder.load_nav_mesh(navmesh)\n",
    "agent = sim.initialize_agent(agent_id=0)\n",
    "\n",
    "def sample_random_viewpoint():\n",
    "    \"\"\" Sample a random viewpoint using the navmesh \"\"\"\n",
    "    nav_point = sim.pathfinder.get_random_navigable_point()\n",
    "    # Sample a random viewpoint height\n",
    "    viewpoint_height = np.random.uniform(1.0, 1.6)\n",
    "    viewpoint_position = nav_point + viewpoint_height * habitat_sim.geo.UP\n",
    "    viewpoint_orientation = quaternion.from_rotation_vector(np.random.uniform(-np.pi, np.pi) * habitat_sim.geo.UP)\n",
    "    return viewpoint_position, viewpoint_orientation\n",
    "\n",
    "def render_viewpoint(position, orientation):\n",
    "    agent_state = habitat_sim.AgentState()\n",
    "    agent_state.position = position\n",
    "    agent_state.rotation = orientation\n",
    "    agent.set_state(agent_state)\n",
    "    viewpoint_observations = sim.get_sensor_observations(agent_ids=0)\n",
    "    image = viewpoint_observations['color'][:,:,:3]\n",
    "    image = np.asarray(np.clip(1.5 * np.asarray(image, dtype=float), 0, 255), dtype=np.uint8)\n",
    "    return image"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Sample a random reference view"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "ref_position, ref_orientation = sample_random_viewpoint()\n",
    "ref_image = render_viewpoint(ref_position, ref_orientation)\n",
    "plt.clf()\n",
    "fig, axes = plt.subplots(1,1, squeeze=False, num=1)\n",
    "axes[0,0].imshow(ref_image)\n",
    "for ax in axes.flatten():\n",
    "    ax.set_xticks([])\n",
    "    ax.set_yticks([])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Interactive cross-view completion using CroCo"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "reconstruct_unmasked_patches = False\n",
    "\n",
    "def show_demo(masking_ratio, x, y, z, panorama, elevation):\n",
    "    R = quaternion.as_rotation_matrix(ref_orientation)\n",
    "    target_position = ref_position + x * R[:,0] + y * R[:,1] + z * R[:,2]\n",
    "    target_orientation = (ref_orientation\n",
    "         * quaternion.from_rotation_vector(-elevation * np.pi/180 * habitat_sim.geo.LEFT) \n",
    "         * quaternion.from_rotation_vector(-panorama * np.pi/180 * habitat_sim.geo.UP))\n",
    "    \n",
    "    ref_image = render_viewpoint(ref_position, ref_orientation)\n",
    "    target_image = render_viewpoint(target_position, target_orientation)\n",
    "\n",
    "    masked_target_image, predicted_image = process_images(ref_image, target_image, masking_ratio, reconstruct_unmasked_patches)\n",
    "\n",
    "    fig, axes = plt.subplots(1,4, squeeze=True, dpi=300)\n",
    "    axes[0].imshow(ref_image)\n",
    "    axes[0].set_xlabel(\"Reference\")\n",
    "    axes[1].imshow(masked_target_image)\n",
    "    axes[1].set_xlabel(\"Masked target\")\n",
    "    axes[2].imshow(predicted_image)\n",
    "    axes[2].set_xlabel(\"Reconstruction\")        \n",
    "    axes[3].imshow(target_image)\n",
    "    axes[3].set_xlabel(\"Target\")\n",
    "    for ax in axes.flatten():\n",
    "        ax.set_xticks([])\n",
    "        ax.set_yticks([])\n",
    "\n",
    "interact(show_demo,\n",
    "        masking_ratio=widgets.FloatSlider(description='masking', value=0.9, min=0.0, max=1.0),\n",
    "        x=widgets.FloatSlider(value=0.0, min=-0.5, max=0.5, step=0.05),\n",
    "        y=widgets.FloatSlider(value=0.0, min=-0.5, max=0.5, step=0.05),\n",
    "        z=widgets.FloatSlider(value=0.0, min=-0.5, max=0.5, step=0.05),\n",
    "        panorama=widgets.FloatSlider(value=0.0, min=-20, max=20, step=0.5),\n",
    "        elevation=widgets.FloatSlider(value=0.0, min=-20, max=20, step=0.5));"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.13"
  },
  "vscode": {
   "interpreter": {
    "hash": "f9237820cd248d7e07cb4fb9f0e4508a85d642f19d831560c0a4b61f3e907e67"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}