Spaces:
Running
Running
File size: 25,245 Bytes
a80d6bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 |
import warnings
from copy import deepcopy
warnings.filterwarnings("ignore", category=UserWarning)
import torch
import torch.utils.checkpoint
from torch import nn
from .base_model import BaseModel
ETH_EPS = 1e-8
class GlueStick(BaseModel):
default_conf = {
'input_dim': 256,
'descriptor_dim': 256,
'bottleneck_dim': None,
'weights': None,
'keypoint_encoder': [32, 64, 128, 256],
'GNN_layers': ['self', 'cross'] * 9,
'num_line_iterations': 1,
'line_attention': False,
'filter_threshold': 0.2,
'checkpointed': False,
'skip_init': False,
'inter_supervision': None,
'loss': {
'nll_weight': 1.,
'nll_balancing': 0.5,
'reward_weight': 0.,
'bottleneck_l2_weight': 0.,
'dense_nll_weight': 0.,
'inter_supervision': [0.3, 0.6],
},
}
required_data_keys = [
'keypoints0', 'keypoints1',
'descriptors0', 'descriptors1',
'keypoint_scores0', 'keypoint_scores1']
DEFAULT_LOSS_CONF = {'nll_weight': 1., 'nll_balancing': 0.5, 'reward_weight': 0., 'bottleneck_l2_weight': 0.}
def _init(self, conf):
if conf.bottleneck_dim is not None:
self.bottleneck_down = nn.Conv1d(
conf.input_dim, conf.bottleneck_dim, kernel_size=1)
self.bottleneck_up = nn.Conv1d(
conf.bottleneck_dim, conf.input_dim, kernel_size=1)
nn.init.constant_(self.bottleneck_down.bias, 0.0)
nn.init.constant_(self.bottleneck_up.bias, 0.0)
if conf.input_dim != conf.descriptor_dim:
self.input_proj = nn.Conv1d(
conf.input_dim, conf.descriptor_dim, kernel_size=1)
nn.init.constant_(self.input_proj.bias, 0.0)
self.kenc = KeypointEncoder(conf.descriptor_dim,
conf.keypoint_encoder)
self.lenc = EndPtEncoder(conf.descriptor_dim, conf.keypoint_encoder)
self.gnn = AttentionalGNN(conf.descriptor_dim, conf.GNN_layers,
checkpointed=conf.checkpointed,
inter_supervision=conf.inter_supervision,
num_line_iterations=conf.num_line_iterations,
line_attention=conf.line_attention)
self.final_proj = nn.Conv1d(conf.descriptor_dim, conf.descriptor_dim,
kernel_size=1)
nn.init.constant_(self.final_proj.bias, 0.0)
nn.init.orthogonal_(self.final_proj.weight, gain=1)
self.final_line_proj = nn.Conv1d(
conf.descriptor_dim, conf.descriptor_dim, kernel_size=1)
nn.init.constant_(self.final_line_proj.bias, 0.0)
nn.init.orthogonal_(self.final_line_proj.weight, gain=1)
if conf.inter_supervision is not None:
self.inter_line_proj = nn.ModuleList(
[nn.Conv1d(conf.descriptor_dim, conf.descriptor_dim, kernel_size=1)
for _ in conf.inter_supervision])
self.layer2idx = {}
for i, l in enumerate(conf.inter_supervision):
nn.init.constant_(self.inter_line_proj[i].bias, 0.0)
nn.init.orthogonal_(self.inter_line_proj[i].weight, gain=1)
self.layer2idx[l] = i
bin_score = torch.nn.Parameter(torch.tensor(1.))
self.register_parameter('bin_score', bin_score)
line_bin_score = torch.nn.Parameter(torch.tensor(1.))
self.register_parameter('line_bin_score', line_bin_score)
if conf.weights:
assert isinstance(conf.weights, str)
state_dict = torch.load(conf.weights, map_location='cpu')
if 'model' in state_dict:
state_dict = {k.replace('matcher.', ''): v for k, v in state_dict['model'].items() if 'matcher.' in k}
state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()}
self.load_state_dict(state_dict)
def _forward(self, data):
device = data['keypoints0'].device
b_size = len(data['keypoints0'])
image_size0 = (data['image_size0'] if 'image_size0' in data
else data['image0'].shape)
image_size1 = (data['image_size1'] if 'image_size1' in data
else data['image1'].shape)
pred = {}
desc0, desc1 = data['descriptors0'], data['descriptors1']
kpts0, kpts1 = data['keypoints0'], data['keypoints1']
n_kpts0, n_kpts1 = kpts0.shape[1], kpts1.shape[1]
n_lines0, n_lines1 = data['lines0'].shape[1], data['lines1'].shape[1]
if n_kpts0 == 0 or n_kpts1 == 0:
# No detected keypoints nor lines
pred['log_assignment'] = torch.zeros(
b_size, n_kpts0, n_kpts1, dtype=torch.float, device=device)
pred['matches0'] = torch.full(
(b_size, n_kpts0), -1, device=device, dtype=torch.int64)
pred['matches1'] = torch.full(
(b_size, n_kpts1), -1, device=device, dtype=torch.int64)
pred['match_scores0'] = torch.zeros(
(b_size, n_kpts0), device=device, dtype=torch.float32)
pred['match_scores1'] = torch.zeros(
(b_size, n_kpts1), device=device, dtype=torch.float32)
pred['line_log_assignment'] = torch.zeros(b_size, n_lines0, n_lines1,
dtype=torch.float, device=device)
pred['line_matches0'] = torch.full((b_size, n_lines0), -1,
device=device, dtype=torch.int64)
pred['line_matches1'] = torch.full((b_size, n_lines1), -1,
device=device, dtype=torch.int64)
pred['line_match_scores0'] = torch.zeros(
(b_size, n_lines0), device=device, dtype=torch.float32)
pred['line_match_scores1'] = torch.zeros(
(b_size, n_kpts1), device=device, dtype=torch.float32)
return pred
lines0 = data['lines0'].flatten(1, 2)
lines1 = data['lines1'].flatten(1, 2)
lines_junc_idx0 = data['lines_junc_idx0'].flatten(1, 2) # [b_size, num_lines * 2]
lines_junc_idx1 = data['lines_junc_idx1'].flatten(1, 2)
if self.conf.bottleneck_dim is not None:
pred['down_descriptors0'] = desc0 = self.bottleneck_down(desc0)
pred['down_descriptors1'] = desc1 = self.bottleneck_down(desc1)
desc0 = self.bottleneck_up(desc0)
desc1 = self.bottleneck_up(desc1)
desc0 = nn.functional.normalize(desc0, p=2, dim=1)
desc1 = nn.functional.normalize(desc1, p=2, dim=1)
pred['bottleneck_descriptors0'] = desc0
pred['bottleneck_descriptors1'] = desc1
if self.conf.loss.nll_weight == 0:
desc0 = desc0.detach()
desc1 = desc1.detach()
if self.conf.input_dim != self.conf.descriptor_dim:
desc0 = self.input_proj(desc0)
desc1 = self.input_proj(desc1)
kpts0 = normalize_keypoints(kpts0, image_size0)
kpts1 = normalize_keypoints(kpts1, image_size1)
assert torch.all(kpts0 >= -1) and torch.all(kpts0 <= 1)
assert torch.all(kpts1 >= -1) and torch.all(kpts1 <= 1)
desc0 = desc0 + self.kenc(kpts0, data['keypoint_scores0'])
desc1 = desc1 + self.kenc(kpts1, data['keypoint_scores1'])
if n_lines0 != 0 and n_lines1 != 0:
# Pre-compute the line encodings
lines0 = normalize_keypoints(lines0, image_size0).reshape(
b_size, n_lines0, 2, 2)
lines1 = normalize_keypoints(lines1, image_size1).reshape(
b_size, n_lines1, 2, 2)
line_enc0 = self.lenc(lines0, data['line_scores0'])
line_enc1 = self.lenc(lines1, data['line_scores1'])
else:
line_enc0 = torch.zeros(
b_size, self.conf.descriptor_dim, n_lines0 * 2,
dtype=torch.float, device=device)
line_enc1 = torch.zeros(
b_size, self.conf.descriptor_dim, n_lines1 * 2,
dtype=torch.float, device=device)
desc0, desc1 = self.gnn(desc0, desc1, line_enc0, line_enc1,
lines_junc_idx0, lines_junc_idx1)
# Match all points (KP and line junctions)
mdesc0, mdesc1 = self.final_proj(desc0), self.final_proj(desc1)
kp_scores = torch.einsum('bdn,bdm->bnm', mdesc0, mdesc1)
kp_scores = kp_scores / self.conf.descriptor_dim ** .5
kp_scores = log_double_softmax(kp_scores, self.bin_score)
m0, m1, mscores0, mscores1 = self._get_matches(kp_scores)
pred['log_assignment'] = kp_scores
pred['matches0'] = m0
pred['matches1'] = m1
pred['match_scores0'] = mscores0
pred['match_scores1'] = mscores1
# Match the lines
if n_lines0 > 0 and n_lines1 > 0:
(line_scores, m0_lines, m1_lines, mscores0_lines,
mscores1_lines, raw_line_scores) = self._get_line_matches(
desc0[:, :, :2 * n_lines0], desc1[:, :, :2 * n_lines1],
lines_junc_idx0, lines_junc_idx1, self.final_line_proj)
if self.conf.inter_supervision:
for l in self.conf.inter_supervision:
(line_scores_i, m0_lines_i, m1_lines_i, mscores0_lines_i,
mscores1_lines_i) = self._get_line_matches(
self.gnn.inter_layers[l][0][:, :, :2 * n_lines0],
self.gnn.inter_layers[l][1][:, :, :2 * n_lines1],
lines_junc_idx0, lines_junc_idx1,
self.inter_line_proj[self.layer2idx[l]])
pred[f'line_{l}_log_assignment'] = line_scores_i
pred[f'line_{l}_matches0'] = m0_lines_i
pred[f'line_{l}_matches1'] = m1_lines_i
pred[f'line_{l}_match_scores0'] = mscores0_lines_i
pred[f'line_{l}_match_scores1'] = mscores1_lines_i
else:
line_scores = torch.zeros(b_size, n_lines0, n_lines1,
dtype=torch.float, device=device)
m0_lines = torch.full((b_size, n_lines0), -1,
device=device, dtype=torch.int64)
m1_lines = torch.full((b_size, n_lines1), -1,
device=device, dtype=torch.int64)
mscores0_lines = torch.zeros(
(b_size, n_lines0), device=device, dtype=torch.float32)
mscores1_lines = torch.zeros(
(b_size, n_lines1), device=device, dtype=torch.float32)
raw_line_scores = torch.zeros(b_size, n_lines0, n_lines1,
dtype=torch.float, device=device)
pred['line_log_assignment'] = line_scores
pred['line_matches0'] = m0_lines
pred['line_matches1'] = m1_lines
pred['line_match_scores0'] = mscores0_lines
pred['line_match_scores1'] = mscores1_lines
pred['raw_line_scores'] = raw_line_scores
return pred
def _get_matches(self, scores_mat):
max0 = scores_mat[:, :-1, :-1].max(2)
max1 = scores_mat[:, :-1, :-1].max(1)
m0, m1 = max0.indices, max1.indices
mutual0 = arange_like(m0, 1)[None] == m1.gather(1, m0)
mutual1 = arange_like(m1, 1)[None] == m0.gather(1, m1)
zero = scores_mat.new_tensor(0)
mscores0 = torch.where(mutual0, max0.values.exp(), zero)
mscores1 = torch.where(mutual1, mscores0.gather(1, m1), zero)
valid0 = mutual0 & (mscores0 > self.conf.filter_threshold)
valid1 = mutual1 & valid0.gather(1, m1)
m0 = torch.where(valid0, m0, m0.new_tensor(-1))
m1 = torch.where(valid1, m1, m1.new_tensor(-1))
return m0, m1, mscores0, mscores1
def _get_line_matches(self, ldesc0, ldesc1, lines_junc_idx0,
lines_junc_idx1, final_proj):
mldesc0 = final_proj(ldesc0)
mldesc1 = final_proj(ldesc1)
line_scores = torch.einsum('bdn,bdm->bnm', mldesc0, mldesc1)
line_scores = line_scores / self.conf.descriptor_dim ** .5
# Get the line representation from the junction descriptors
n2_lines0 = lines_junc_idx0.shape[1]
n2_lines1 = lines_junc_idx1.shape[1]
line_scores = torch.gather(
line_scores, dim=2,
index=lines_junc_idx1[:, None, :].repeat(1, line_scores.shape[1], 1))
line_scores = torch.gather(
line_scores, dim=1,
index=lines_junc_idx0[:, :, None].repeat(1, 1, n2_lines1))
line_scores = line_scores.reshape((-1, n2_lines0 // 2, 2,
n2_lines1 // 2, 2))
# Match either in one direction or the other
raw_line_scores = 0.5 * torch.maximum(
line_scores[:, :, 0, :, 0] + line_scores[:, :, 1, :, 1],
line_scores[:, :, 0, :, 1] + line_scores[:, :, 1, :, 0])
line_scores = log_double_softmax(raw_line_scores, self.line_bin_score)
m0_lines, m1_lines, mscores0_lines, mscores1_lines = self._get_matches(
line_scores)
return (line_scores, m0_lines, m1_lines, mscores0_lines,
mscores1_lines, raw_line_scores)
def loss(self, pred, data):
raise NotImplementedError()
def metrics(self, pred, data):
raise NotImplementedError()
def MLP(channels, do_bn=True):
n = len(channels)
layers = []
for i in range(1, n):
layers.append(
nn.Conv1d(channels[i - 1], channels[i], kernel_size=1, bias=True))
if i < (n - 1):
if do_bn:
layers.append(nn.BatchNorm1d(channels[i]))
layers.append(nn.ReLU())
return nn.Sequential(*layers)
def normalize_keypoints(kpts, shape_or_size):
if isinstance(shape_or_size, (tuple, list)):
# it's a shape
h, w = shape_or_size[-2:]
size = kpts.new_tensor([[w, h]])
else:
# it's a size
assert isinstance(shape_or_size, torch.Tensor)
size = shape_or_size.to(kpts)
c = size / 2
f = size.max(1, keepdim=True).values * 0.7 # somehow we used 0.7 for SG
return (kpts - c[:, None, :]) / f[:, None, :]
class KeypointEncoder(nn.Module):
def __init__(self, feature_dim, layers):
super().__init__()
self.encoder = MLP([3] + list(layers) + [feature_dim], do_bn=True)
nn.init.constant_(self.encoder[-1].bias, 0.0)
def forward(self, kpts, scores):
inputs = [kpts.transpose(1, 2), scores.unsqueeze(1)]
return self.encoder(torch.cat(inputs, dim=1))
class EndPtEncoder(nn.Module):
def __init__(self, feature_dim, layers):
super().__init__()
self.encoder = MLP([5] + list(layers) + [feature_dim], do_bn=True)
nn.init.constant_(self.encoder[-1].bias, 0.0)
def forward(self, endpoints, scores):
# endpoints should be [B, N, 2, 2]
# output is [B, feature_dim, N * 2]
b_size, n_pts, _, _ = endpoints.shape
assert tuple(endpoints.shape[-2:]) == (2, 2)
endpt_offset = (endpoints[:, :, 1] - endpoints[:, :, 0]).unsqueeze(2)
endpt_offset = torch.cat([endpt_offset, -endpt_offset], dim=2)
endpt_offset = endpt_offset.reshape(b_size, 2 * n_pts, 2).transpose(1, 2)
inputs = [endpoints.flatten(1, 2).transpose(1, 2),
endpt_offset, scores.repeat(1, 2).unsqueeze(1)]
return self.encoder(torch.cat(inputs, dim=1))
@torch.cuda.amp.custom_fwd(cast_inputs=torch.float32)
def attention(query, key, value):
dim = query.shape[1]
scores = torch.einsum('bdhn,bdhm->bhnm', query, key) / dim ** .5
prob = torch.nn.functional.softmax(scores, dim=-1)
return torch.einsum('bhnm,bdhm->bdhn', prob, value), prob
class MultiHeadedAttention(nn.Module):
def __init__(self, h, d_model):
super().__init__()
assert d_model % h == 0
self.dim = d_model // h
self.h = h
self.merge = nn.Conv1d(d_model, d_model, kernel_size=1)
self.proj = nn.ModuleList([deepcopy(self.merge) for _ in range(3)])
# self.prob = []
def forward(self, query, key, value):
b = query.size(0)
query, key, value = [l(x).view(b, self.dim, self.h, -1)
for l, x in zip(self.proj, (query, key, value))]
x, prob = attention(query, key, value)
# self.prob.append(prob.mean(dim=1))
return self.merge(x.contiguous().view(b, self.dim * self.h, -1))
class AttentionalPropagation(nn.Module):
def __init__(self, num_dim, num_heads, skip_init=False):
super().__init__()
self.attn = MultiHeadedAttention(num_heads, num_dim)
self.mlp = MLP([num_dim * 2, num_dim * 2, num_dim], do_bn=True)
nn.init.constant_(self.mlp[-1].bias, 0.0)
if skip_init:
self.register_parameter('scaling', nn.Parameter(torch.tensor(0.)))
else:
self.scaling = 1.
def forward(self, x, source):
message = self.attn(x, source, source)
return self.mlp(torch.cat([x, message], dim=1)) * self.scaling
class GNNLayer(nn.Module):
def __init__(self, feature_dim, layer_type, skip_init):
super().__init__()
assert layer_type in ['cross', 'self']
self.type = layer_type
self.update = AttentionalPropagation(feature_dim, 4, skip_init)
def forward(self, desc0, desc1):
if self.type == 'cross':
src0, src1 = desc1, desc0
elif self.type == 'self':
src0, src1 = desc0, desc1
else:
raise ValueError("Unknown layer type: " + self.type)
# self.update.attn.prob = []
delta0, delta1 = self.update(desc0, src0), self.update(desc1, src1)
desc0, desc1 = (desc0 + delta0), (desc1 + delta1)
return desc0, desc1
class LineLayer(nn.Module):
def __init__(self, feature_dim, line_attention=False):
super().__init__()
self.dim = feature_dim
self.mlp = MLP([self.dim * 3, self.dim * 2, self.dim], do_bn=True)
self.line_attention = line_attention
if line_attention:
self.proj_node = nn.Conv1d(self.dim, self.dim, kernel_size=1)
self.proj_neigh = nn.Conv1d(2 * self.dim, self.dim, kernel_size=1)
def get_endpoint_update(self, ldesc, line_enc, lines_junc_idx):
# ldesc is [bs, D, n_junc], line_enc [bs, D, n_lines * 2]
# and lines_junc_idx [bs, n_lines * 2]
# Create one message per line endpoint
b_size = lines_junc_idx.shape[0]
line_desc = torch.gather(
ldesc, 2, lines_junc_idx[:, None].repeat(1, self.dim, 1))
message = torch.cat([
line_desc,
line_desc.reshape(b_size, self.dim, -1, 2).flip([-1]).flatten(2, 3).clone(),
line_enc], dim=1)
return self.mlp(message) # [b_size, D, n_lines * 2]
def get_endpoint_attention(self, ldesc, line_enc, lines_junc_idx):
# ldesc is [bs, D, n_junc], line_enc [bs, D, n_lines * 2]
# and lines_junc_idx [bs, n_lines * 2]
b_size = lines_junc_idx.shape[0]
expanded_lines_junc_idx = lines_junc_idx[:, None].repeat(1, self.dim, 1)
# Query: desc of the current node
query = self.proj_node(ldesc) # [b_size, D, n_junc]
query = torch.gather(query, 2, expanded_lines_junc_idx)
# query is [b_size, D, n_lines * 2]
# Key: combination of neighboring desc and line encodings
line_desc = torch.gather(ldesc, 2, expanded_lines_junc_idx)
key = self.proj_neigh(torch.cat([
line_desc.reshape(b_size, self.dim, -1, 2).flip([-1]).flatten(2, 3).clone(),
line_enc], dim=1)) # [b_size, D, n_lines * 2]
# Compute the attention weights with a custom softmax per junction
prob = (query * key).sum(dim=1) / self.dim ** .5 # [b_size, n_lines * 2]
prob = torch.exp(prob - prob.max())
denom = torch.zeros_like(ldesc[:, 0]).scatter_reduce_(
dim=1, index=lines_junc_idx,
src=prob, reduce='sum', include_self=False) # [b_size, n_junc]
denom = torch.gather(denom, 1, lines_junc_idx) # [b_size, n_lines * 2]
prob = prob / (denom + ETH_EPS)
return prob # [b_size, n_lines * 2]
def forward(self, ldesc0, ldesc1, line_enc0, line_enc1, lines_junc_idx0,
lines_junc_idx1):
# Gather the endpoint updates
lupdate0 = self.get_endpoint_update(ldesc0, line_enc0, lines_junc_idx0)
lupdate1 = self.get_endpoint_update(ldesc1, line_enc1, lines_junc_idx1)
update0, update1 = torch.zeros_like(ldesc0), torch.zeros_like(ldesc1)
dim = ldesc0.shape[1]
if self.line_attention:
# Compute an attention for each neighbor and do a weighted average
prob0 = self.get_endpoint_attention(ldesc0, line_enc0,
lines_junc_idx0)
lupdate0 = lupdate0 * prob0[:, None]
update0 = update0.scatter_reduce_(
dim=2, index=lines_junc_idx0[:, None].repeat(1, dim, 1),
src=lupdate0, reduce='sum', include_self=False)
prob1 = self.get_endpoint_attention(ldesc1, line_enc1,
lines_junc_idx1)
lupdate1 = lupdate1 * prob1[:, None]
update1 = update1.scatter_reduce_(
dim=2, index=lines_junc_idx1[:, None].repeat(1, dim, 1),
src=lupdate1, reduce='sum', include_self=False)
else:
# Average the updates for each junction (requires torch > 1.12)
update0 = update0.scatter_reduce_(
dim=2, index=lines_junc_idx0[:, None].repeat(1, dim, 1),
src=lupdate0, reduce='mean', include_self=False)
update1 = update1.scatter_reduce_(
dim=2, index=lines_junc_idx1[:, None].repeat(1, dim, 1),
src=lupdate1, reduce='mean', include_self=False)
# Update
ldesc0 = ldesc0 + update0
ldesc1 = ldesc1 + update1
return ldesc0, ldesc1
class AttentionalGNN(nn.Module):
def __init__(self, feature_dim, layer_types, checkpointed=False,
skip=False, inter_supervision=None, num_line_iterations=1,
line_attention=False):
super().__init__()
self.checkpointed = checkpointed
self.inter_supervision = inter_supervision
self.num_line_iterations = num_line_iterations
self.inter_layers = {}
self.layers = nn.ModuleList([
GNNLayer(feature_dim, layer_type, skip)
for layer_type in layer_types])
self.line_layers = nn.ModuleList(
[LineLayer(feature_dim, line_attention)
for _ in range(len(layer_types) // 2)])
def forward(self, desc0, desc1, line_enc0, line_enc1,
lines_junc_idx0, lines_junc_idx1):
for i, layer in enumerate(self.layers):
if self.checkpointed:
desc0, desc1 = torch.utils.checkpoint.checkpoint(
layer, desc0, desc1, preserve_rng_state=False)
else:
desc0, desc1 = layer(desc0, desc1)
if (layer.type == 'self' and lines_junc_idx0.shape[1] > 0
and lines_junc_idx1.shape[1] > 0):
# Add line self attention layers after every self layer
for _ in range(self.num_line_iterations):
if self.checkpointed:
desc0, desc1 = torch.utils.checkpoint.checkpoint(
self.line_layers[i // 2], desc0, desc1, line_enc0,
line_enc1, lines_junc_idx0, lines_junc_idx1,
preserve_rng_state=False)
else:
desc0, desc1 = self.line_layers[i // 2](
desc0, desc1, line_enc0, line_enc1,
lines_junc_idx0, lines_junc_idx1)
# Optionally store the line descriptor at intermediate layers
if (self.inter_supervision is not None
and (i // 2) in self.inter_supervision
and layer.type == 'cross'):
self.inter_layers[i // 2] = (desc0.clone(), desc1.clone())
return desc0, desc1
def log_double_softmax(scores, bin_score):
b, m, n = scores.shape
bin_ = bin_score[None, None, None]
scores0 = torch.cat([scores, bin_.expand(b, m, 1)], 2)
scores1 = torch.cat([scores, bin_.expand(b, 1, n)], 1)
scores0 = torch.nn.functional.log_softmax(scores0, 2)
scores1 = torch.nn.functional.log_softmax(scores1, 1)
scores = scores.new_full((b, m + 1, n + 1), 0)
scores[:, :m, :n] = (scores0[:, :, :n] + scores1[:, :m, :]) / 2
scores[:, :-1, -1] = scores0[:, :, -1]
scores[:, -1, :-1] = scores1[:, -1, :]
return scores
def arange_like(x, dim):
return x.new_ones(x.shape[dim]).cumsum(0) - 1 # traceable in 1.1
|