Spaces:
Running
Running
File size: 8,494 Bytes
a80d6bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import bisect
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
from copy import deepcopy
def _compute_conf_thresh(data):
dataset_name = data['dataset_name'][0].lower()
if dataset_name == 'scannet':
thr = 5e-4
elif dataset_name == 'megadepth' or dataset_name=='gl3d':
thr = 1e-4
else:
raise ValueError(f'Unknown dataset: {dataset_name}')
return thr
# --- VISUALIZATION --- #
def make_matching_figure(
img0, img1, mkpts0, mkpts1, color,
kpts0=None, kpts1=None, text=[], dpi=75, path=None):
# draw image pair
assert mkpts0.shape[0] == mkpts1.shape[0], f'mkpts0: {mkpts0.shape[0]} v.s. mkpts1: {mkpts1.shape[0]}'
fig, axes = plt.subplots(1, 2, figsize=(10, 6), dpi=dpi)
axes[0].imshow(img0, cmap='gray')
axes[1].imshow(img1, cmap='gray')
for i in range(2): # clear all frames
axes[i].get_yaxis().set_ticks([])
axes[i].get_xaxis().set_ticks([])
for spine in axes[i].spines.values():
spine.set_visible(False)
plt.tight_layout(pad=1)
if kpts0 is not None:
assert kpts1 is not None
axes[0].scatter(kpts0[:, 0], kpts0[:, 1], c='w', s=2)
axes[1].scatter(kpts1[:, 0], kpts1[:, 1], c='w', s=2)
# draw matches
if mkpts0.shape[0] != 0 and mkpts1.shape[0] != 0:
fig.canvas.draw()
transFigure = fig.transFigure.inverted()
fkpts0 = transFigure.transform(axes[0].transData.transform(mkpts0))
fkpts1 = transFigure.transform(axes[1].transData.transform(mkpts1))
fig.lines = [matplotlib.lines.Line2D((fkpts0[i, 0], fkpts1[i, 0]),
(fkpts0[i, 1], fkpts1[i, 1]),
transform=fig.transFigure, c=color[i], linewidth=1)
for i in range(len(mkpts0))]
axes[0].scatter(mkpts0[:, 0], mkpts0[:, 1], c=color, s=4)
axes[1].scatter(mkpts1[:, 0], mkpts1[:, 1], c=color, s=4)
# put txts
txt_color = 'k' if img0[:100, :200].mean() > 200 else 'w'
fig.text(
0.01, 0.99, '\n'.join(text), transform=fig.axes[0].transAxes,
fontsize=15, va='top', ha='left', color=txt_color)
# save or return figure
if path:
plt.savefig(str(path), bbox_inches='tight', pad_inches=0)
plt.close()
else:
return fig
def _make_evaluation_figure(data, b_id, alpha='dynamic'):
b_mask = data['m_bids'] == b_id
conf_thr = _compute_conf_thresh(data)
img0 = (data['image0'][b_id][0].cpu().numpy() * 255).round().astype(np.int32)
img1 = (data['image1'][b_id][0].cpu().numpy() * 255).round().astype(np.int32)
kpts0 = data['mkpts0_f'][b_mask].cpu().numpy()
kpts1 = data['mkpts1_f'][b_mask].cpu().numpy()
# for megadepth, we visualize matches on the resized image
if 'scale0' in data:
kpts0 = kpts0 / data['scale0'][b_id].cpu().numpy()[[1, 0]]
kpts1 = kpts1 / data['scale1'][b_id].cpu().numpy()[[1, 0]]
epi_errs = data['epi_errs'][b_mask].cpu().numpy()
correct_mask = epi_errs < conf_thr
precision = np.mean(correct_mask) if len(correct_mask) > 0 else 0
n_correct = np.sum(correct_mask)
n_gt_matches = int(data['conf_matrix_gt'][b_id].sum().cpu())
recall = 0 if n_gt_matches == 0 else n_correct / (n_gt_matches)
# recall might be larger than 1, since the calculation of conf_matrix_gt
# uses groundtruth depths and camera poses, but epipolar distance is used here.
# matching info
if alpha == 'dynamic':
alpha = dynamic_alpha(len(correct_mask))
color = error_colormap(epi_errs, conf_thr, alpha=alpha)
text = [
f'#Matches {len(kpts0)}',
f'Precision({conf_thr:.2e}) ({100 * precision:.1f}%): {n_correct}/{len(kpts0)}',
f'Recall({conf_thr:.2e}) ({100 * recall:.1f}%): {n_correct}/{n_gt_matches}'
]
# make the figure
figure = make_matching_figure(img0, img1, kpts0, kpts1,
color, text=text)
return figure
def _make_evaluation_figure_offset(data, b_id, alpha='dynamic',side=''):
layer_num=data['predict_flow'][0].shape[0]
b_mask = data['offset_bids'+side] == b_id
conf_thr = 2e-3 #hardcode for scannet(coarse level)
img0 = (data['image0'][b_id][0].cpu().numpy() * 255).round().astype(np.int32)
img1 = (data['image1'][b_id][0].cpu().numpy() * 255).round().astype(np.int32)
figure_list=[]
#draw offset matches in different layers
for layer_index in range(layer_num):
l_mask=data['offset_lids'+side]==layer_index
mask=l_mask&b_mask
kpts0 = data['offset_kpts0_f'+side][mask].cpu().numpy()
kpts1 = data['offset_kpts1_f'+side][mask].cpu().numpy()
epi_errs = data['epi_errs_offset'+side][mask].cpu().numpy()
correct_mask = epi_errs < conf_thr
precision = np.mean(correct_mask) if len(correct_mask) > 0 else 0
n_correct = np.sum(correct_mask)
n_gt_matches = int(data['conf_matrix_gt'][b_id].sum().cpu())
recall = 0 if n_gt_matches == 0 else n_correct / (n_gt_matches)
# recall might be larger than 1, since the calculation of conf_matrix_gt
# uses groundtruth depths and camera poses, but epipolar distance is used here.
# matching info
if alpha == 'dynamic':
alpha = dynamic_alpha(len(correct_mask))
color = error_colormap(epi_errs, conf_thr, alpha=alpha)
text = [
f'#Matches {len(kpts0)}',
f'Precision({conf_thr:.2e}) ({100 * precision:.1f}%): {n_correct}/{len(kpts0)}',
f'Recall({conf_thr:.2e}) ({100 * recall:.1f}%): {n_correct}/{n_gt_matches}'
]
# make the figure
#import pdb;pdb.set_trace()
figure = make_matching_figure(deepcopy(img0), deepcopy(img1) , kpts0, kpts1,
color, text=text)
figure_list.append(figure)
return figure
def _make_confidence_figure(data, b_id):
# TODO: Implement confidence figure
raise NotImplementedError()
def make_matching_figures(data, config, mode='evaluation'):
""" Make matching figures for a batch.
Args:
data (Dict): a batch updated by PL_LoFTR.
config (Dict): matcher config
Returns:
figures (Dict[str, List[plt.figure]]
"""
assert mode in ['evaluation', 'confidence'] # 'confidence'
figures = {mode: []}
for b_id in range(data['image0'].size(0)):
if mode == 'evaluation':
fig = _make_evaluation_figure(
data, b_id,
alpha=config.TRAINER.PLOT_MATCHES_ALPHA)
elif mode == 'confidence':
fig = _make_confidence_figure(data, b_id)
else:
raise ValueError(f'Unknown plot mode: {mode}')
figures[mode].append(fig)
return figures
def make_matching_figures_offset(data, config, mode='evaluation',side=''):
""" Make matching figures for a batch.
Args:
data (Dict): a batch updated by PL_LoFTR.
config (Dict): matcher config
Returns:
figures (Dict[str, List[plt.figure]]
"""
assert mode in ['evaluation', 'confidence'] # 'confidence'
figures = {mode: []}
for b_id in range(data['image0'].size(0)):
if mode == 'evaluation':
fig = _make_evaluation_figure_offset(
data, b_id,
alpha=config.TRAINER.PLOT_MATCHES_ALPHA,side=side)
elif mode == 'confidence':
fig = _make_evaluation_figure_offset(data, b_id)
else:
raise ValueError(f'Unknown plot mode: {mode}')
figures[mode].append(fig)
return figures
def dynamic_alpha(n_matches,
milestones=[0, 300, 1000, 2000],
alphas=[1.0, 0.8, 0.4, 0.2]):
if n_matches == 0:
return 1.0
ranges = list(zip(alphas, alphas[1:] + [None]))
loc = bisect.bisect_right(milestones, n_matches) - 1
_range = ranges[loc]
if _range[1] is None:
return _range[0]
return _range[1] + (milestones[loc + 1] - n_matches) / (
milestones[loc + 1] - milestones[loc]) * (_range[0] - _range[1])
def error_colormap(err, thr, alpha=1.0):
assert alpha <= 1.0 and alpha > 0, f"Invaid alpha value: {alpha}"
x = 1 - np.clip(err / (thr * 2), 0, 1)
return np.clip(
np.stack([2-x*2, x*2, np.zeros_like(x), np.ones_like(x)*alpha], -1), 0, 1)
|