File size: 7,019 Bytes
a80d6bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import io
import cv2
import numpy as np
import h5py
import torch
from numpy.linalg import inv
import re


try:
    # for internel use only
    from .client import MEGADEPTH_CLIENT, SCANNET_CLIENT
except Exception:
    MEGADEPTH_CLIENT = SCANNET_CLIENT = None

# --- DATA IO ---

def load_array_from_s3(
    path, client, cv_type,
    use_h5py=False,
):
    byte_str = client.Get(path)
    try:
        if not use_h5py:
            raw_array = np.fromstring(byte_str, np.uint8)
            data = cv2.imdecode(raw_array, cv_type)
        else:
            f = io.BytesIO(byte_str)
            data = np.array(h5py.File(f, 'r')['/depth'])
    except Exception as ex:
        print(f"==> Data loading failure: {path}")
        raise ex

    assert data is not None
    return data


def imread_gray(path, augment_fn=None, client=SCANNET_CLIENT):
    cv_type = cv2.IMREAD_GRAYSCALE if augment_fn is None \
                else cv2.IMREAD_COLOR
    if str(path).startswith('s3://'):
        image = load_array_from_s3(str(path), client, cv_type)
    else:
        image = cv2.imread(str(path), cv_type)

    if augment_fn is not None:
        image = cv2.imread(str(path), cv2.IMREAD_COLOR)
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        image = augment_fn(image)
        image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
    return image  # (h, w)


def get_resized_wh(w, h, resize=None):
    if resize is not None:  # resize the longer edge
        scale = resize / max(h, w)
        w_new, h_new = int(round(w*scale)), int(round(h*scale))
    else:
        w_new, h_new = w, h
    return w_new, h_new


def get_divisible_wh(w, h, df=None):
    if df is not None:
        w_new, h_new = map(lambda x: int(x // df * df), [w, h])
    else:
        w_new, h_new = w, h
    return w_new, h_new


def pad_bottom_right(inp, pad_size, ret_mask=False):
    assert isinstance(pad_size, int) and pad_size >= max(inp.shape[-2:]), f"{pad_size} < {max(inp.shape[-2:])}"
    mask = None
    if inp.ndim == 2:
        padded = np.zeros((pad_size, pad_size), dtype=inp.dtype)
        padded[:inp.shape[0], :inp.shape[1]] = inp
        if ret_mask:
            mask = np.zeros((pad_size, pad_size), dtype=bool)
            mask[:inp.shape[0], :inp.shape[1]] = True
    elif inp.ndim == 3:
        padded = np.zeros((inp.shape[0], pad_size, pad_size), dtype=inp.dtype)
        padded[:, :inp.shape[1], :inp.shape[2]] = inp
        if ret_mask:
            mask = np.zeros((inp.shape[0], pad_size, pad_size), dtype=bool)
            mask[:, :inp.shape[1], :inp.shape[2]] = True
    else:
        raise NotImplementedError()
    return padded, mask


# --- MEGADEPTH ---

def read_megadepth_gray(path, resize=None, df=None, padding=False, augment_fn=None):
    """
    Args:
        resize (int, optional): the longer edge of resized images. None for no resize.
        padding (bool): If set to 'True', zero-pad resized images to squared size.
        augment_fn (callable, optional): augments images with pre-defined visual effects
    Returns:
        image (torch.tensor): (1, h, w)
        mask (torch.tensor): (h, w)
        scale (torch.tensor): [w/w_new, h/h_new]        
    """
    # read image
    image = imread_gray(path, augment_fn, client=MEGADEPTH_CLIENT)

    # resize image
    w, h = image.shape[1], image.shape[0]
    w_new, h_new = get_resized_wh(w, h, resize)
    w_new, h_new = get_divisible_wh(w_new, h_new, df)

    image = cv2.resize(image, (w_new, h_new))
    scale = torch.tensor([w/w_new, h/h_new], dtype=torch.float)

    if padding:  # padding
        pad_to = max(h_new, w_new)
        image, mask = pad_bottom_right(image, pad_to, ret_mask=True)
    else:
        mask = None

    image = torch.from_numpy(image).float()[None] / 255  # (h, w) -> (1, h, w) and normalized
    if mask is not None:
        mask = torch.from_numpy(mask)

    return image, mask, scale


def read_megadepth_depth(path, pad_to=None):
    if str(path).startswith('s3://'):
        depth = load_array_from_s3(path, MEGADEPTH_CLIENT, None, use_h5py=True)
    else:
        depth = np.array(h5py.File(path, 'r')['depth'])
    if pad_to is not None:
        depth, _ = pad_bottom_right(depth, pad_to, ret_mask=False)
    depth = torch.from_numpy(depth).float()  # (h, w)
    return depth


# --- ScanNet ---

def read_scannet_gray(path, resize=(640, 480), augment_fn=None):
    """
    Args:
        resize (tuple): align image to depthmap, in (w, h).
        augment_fn (callable, optional): augments images with pre-defined visual effects
    Returns:
        image (torch.tensor): (1, h, w)
        mask (torch.tensor): (h, w)
        scale (torch.tensor): [w/w_new, h/h_new]        
    """
    # read and resize image
    image = imread_gray(path, augment_fn)
    image = cv2.resize(image, resize)

    # (h, w) -> (1, h, w) and normalized
    image = torch.from_numpy(image).float()[None] / 255
    return image


def read_scannet_depth(path):
    if str(path).startswith('s3://'):
        depth = load_array_from_s3(str(path), SCANNET_CLIENT, cv2.IMREAD_UNCHANGED)
    else:
        depth = cv2.imread(str(path), cv2.IMREAD_UNCHANGED)
    depth = depth / 1000
    depth = torch.from_numpy(depth).float()  # (h, w)
    return depth


def read_scannet_pose(path):
    """ Read ScanNet's Camera2World pose and transform it to World2Camera.
    
    Returns:
        pose_w2c (np.ndarray): (4, 4)
    """
    cam2world = np.loadtxt(path, delimiter=' ')
    world2cam = inv(cam2world)
    return world2cam


def read_scannet_intrinsic(path):
    """ Read ScanNet's intrinsic matrix and return the 3x3 matrix.
    """
    intrinsic = np.loadtxt(path, delimiter=' ')
    return intrinsic[:-1, :-1]


def read_gl3d_gray(path,resize):
    img=cv2.resize(cv2.imread(path,cv2.IMREAD_GRAYSCALE),(int(resize),int(resize)))
    img = torch.from_numpy(img).float()[None] / 255  # (h, w) -> (1, h, w) and normalized
    return img

def read_gl3d_depth(file_path):
    with open(file_path, 'rb') as fin:
        color = None
        width = None
        height = None
        scale = None
        data_type = None
        header = str(fin.readline().decode('UTF-8')).rstrip()
        if header == 'PF':
            color = True
        elif header == 'Pf':
            color = False
        else:
            raise Exception('Not a PFM file.')
        dim_match = re.match(r'^(\d+)\s(\d+)\s$', fin.readline().decode('UTF-8'))
        if dim_match:
            width, height = map(int, dim_match.groups())
        else:
            raise Exception('Malformed PFM header.')
        scale = float((fin.readline().decode('UTF-8')).rstrip())
        if scale < 0:  # little-endian
            data_type = '<f'
        else:
            data_type = '>f'  # big-endian
        data_string = fin.read()
        data = np.fromstring(data_string, data_type)
        shape = (height, width, 3) if color else (height, width)
        data = np.reshape(data, shape)
        data = np.flip(data, 0)
    return torch.from_numpy(data.copy()).float()